“Yellow” laccase from Sclerotinia sclerotiorum is a blue laccase that enhances its substrate affinity by forming a reversible tyrosyl-product adduct
Autoři:
Augustin C. Mot aff001; Cristina Coman aff001; Niculina Hadade aff001; Grigore Damian aff004; Radu Silaghi-Dumitrescu aff001; Hendrik Heering aff003
Působiště autorů:
Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
aff001; Department of Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
aff002; Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
aff003; Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225530
Souhrn
Yellow laccases lack the typical blue type 1 Cu absorption band around 600 nm; however, multi-copper oxidases with laccase properties have been reported. We provide the first evidence that the yellow laccase isolated from Sclerotinia sclerotiorum is obtained from a blue form by covalent, but nevertheless reversible modification with a phenolic product. After separating the phenolics from the extracellular medium, a typical blue laccase is obtained. With ABTS as model substrate for this blue enzyme, a non-natural purple adduct is formed with a spectrum nearly identical to that of the 1:1 adduct of an ABTS radical and Tyr. This modification significantly increases the stability and substrate affinity of the enzyme, not by acting primarily as bound mediator, but by structural changes that also alters the type 1 Cu site. The HPLC-MS analyses of the ABTS adduct trypsin digests revealed a distinct tyrosine within a unique loop as site involved in the modification of the blue laccase form. Thus, S. sclerotiorum yellow laccase seems to be an intrinsically blue multi-copper oxidase that boosts its activity and stability with a radical-forming aromatic substrate. This particular case could, at least in part, explain the enigma of the yellow laccases.
Klíčová slova:
Electron spin resonance spectroscopy – Guanidines – Liquid chromatography-mass spectrometry – Oxidation-reduction reactions – Phenols – Tyrosine – Ultraviolet-visible spectroscopy – Laccases
Zdroje
1. Claus H. Laccases: structure, reactions, distribution. Micron. 2004;35: 93–6. doi: 10.1016/j.micron.2003.10.029 15036303
2. Mot AC, Silaghi-Dumitrescu R. Laccases: Complex architectures for one-electron oxidations. Biochem. 2012;77: 1395–1407. doi: 10.1134/S0006297912120085 23244736
3. Solomon EI, Sundaram UM, Machonkin TE. Multicopper Oxidases and Oxygenases. Chem Rev. 1996;96: 2563–2606. doi: 10.1021/cr950046o 11848837
4. Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002;60: 551–65. Available: http://www.ncbi.nlm.nih.gov/pubmed/12126701 doi: 10.1016/s0031-9422(02)00171-1 12126701
5. Rodríguez Couto S, Toca Herrera JL. Industrial and biotechnological applications of laccases: a review. Biotechnol Adv. 2006;24: 500–13. doi: 10.1016/j.biotechadv.2006.04.003 16716556
6. Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67: 369–85. doi: 10.1007/s00018-009-0169-1 19844659
7. Wood DA. Production, Purification and Properties of Extracellular Laccase of Agaricus bisporus. Microbiology. 1980;117: 327–338. doi: 10.1099/00221287-117-2-327
8. Edens WA, Goins TQ, Dooley D, Henson JM. Purification and characterization of a secreted laccase of Gaeumannomyces graminis var. tritici. Appl Environ Microbiol. 1999;65: 3071–4. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=91458&tool=pmcentrez&rendertype=abstract 10388705
9. DE VRIES OMH, KOOISTRA WHCF, WESSELS JGH. Formation of an Extracellular Laccase by a Schizophyllum commune Dikaryon. Microbiology. 1986;132: 2817–2826. doi: 10.1099/00221287-132-10-2817
10. Leontievsky A, Myasoedova N, Pozdnyakova N, Golovleva L. “Yellow” laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Lett. 1997;413: 446–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/9303553 doi: 10.1016/s0014-5793(97)00953-8 9303553
11. Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, et al. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett. 2006;156: 9–14. doi: 10.1111/j.1574-6968.1997.tb12698.x 9368354
12. Min K.L., Kim Y.H., Kim Y.W., Jung YCH H.S. Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis.—PubMed—NCBI. In: Archives of Biochemistry and Biophysics [Internet]. 2001 [cited 5 Jan 2016] pp. 279–286. Available: http://www.ncbi.nlm.nih.gov/pubmed/11488603
13. Pozdnyakova N., Rodakiewicz-Nowak J, Turkovskaya O. Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym. 2004;30: 19–24. doi: 10.1016/j.molcatb.2004.03.005
14. Pozdnyakova N.N., Turkovskaya O.V., Yudina E.N., Rodakiewicz-Nowak J. [Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization].—PubMed—NCBI. In: Applied Biochemistry and Microbiology [Internet]. 2006 [cited 5 Jan 2016] pp. 56–61. Available: http://www.ncbi.nlm.nih.gov/pubmed/16521579
15. Wang S-N, Chen Q-J, Zhu M-J, Xue F-Y, Li W-C, Zhao T-J, et al. An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization. Biochimie. 2018;148: 46–54. doi: 10.1016/j.biochi.2018.02.015 29501482
16. Huang W-T, Tai R, Hseu R-S, Huang C-T. Overexpression and characterization of a thermostable, pH-stable and organic solvent-tolerant Ganoderma fornicatum laccase in Pichia pastoris. Process Biochem. 2011;46: 1469–1474. doi: 10.1016/j.procbio.2011.03.020
17. Lisov A V, Zavarzina AG, Zavarzin AA, Leontievsky AA. Laccases produced by lichens of the order Peltigerales. FEMS Microbiol Lett. 2007;275: 46–52. doi: 10.1111/j.1574-6968.2007.00858.x 17681009
18. Galai S, Korri-Youssoufi H, Marzouki MN. Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization. J Chem Technol Biotechnol. 2014;89: 1741–1750. doi: 10.1002/jctb.4254
19. Daroch M, Houghton CA, Moore JK, Wilkinson MC, Carnell AJ, Bates AD, et al. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzyme Microb Technol. 2014;58–59: 1–7. doi: 10.1016/j.enzmictec.2014.02.003 24731818
20. Ike PTL, Moreira AC, de Almeida FG, Ferreira D, Birolli WG, Porto ALM, et al. Functional characterization of a yellow laccase from Leucoagaricus gongylophorus. Springerplus. 2015;4: 654. doi: 10.1186/s40064-015-1464-y 26543788
21. Chen B, Xu W-Q, Pan X-R, Lu L. A novel non-blue laccase from Bacillus amyloliquefaciens: secretory expression and characterization. Int J Biol Macromol. 2015;76: 39–44. doi: 10.1016/j.ijbiomac.2015.02.019 25709013
22. Zhou P, Fu C, Fu S, Zhan H. Purification and Characterization of White Laccase from the White-rot Fungus Panus conchatus. BioResources. 2014;9: 1964–1976. doi: 10.15376/biores.9.2.1964–1976
23. Leontievsky AA, Myasoedova NM, Baskunov BP, Pozdnyakova NN, Vares T, Kalkkinen N, et al. Reactions of blue and yellow fungal laccases with lignin model compounds. Biochem Biokhimiia. 1999;64: 1150–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/10561562
24. Mate DM, Garcia-Ruiz E, Camarero S, Shubin V V., Falk M, Shleev S, et al. Switching from blue to yellow: altering the spectral properties of a high redox potential laccase by directed evolution. Biocatal Biotransformation. 2013 [cited 7 Jan 2016]. Available: http://www.tandfonline.com/doi/abs/10.3109/10242422.2012.749463?journalCode=ibab20 doi: 10.3109/10242422.2013.858712
25. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 1997;272: 31301–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/9395457 doi: 10.1074/jbc.272.50.31301 9395457
26. Litthauer D, van Vuuren MJ, van Tonder A, Wolfaardt FW. Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microb Technol. 2007;40: 563–568. doi: 10.1016/j.enzmictec.2006.05.011
27. Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C. Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol Lett. 2009;31: 837–843. doi: 10.1007/s10529-009-9945-0 19221878
28. KANEKO S, CHENG M, MURAI H, TAKENAKA S, MURAKAMI S, AOKI K. Purification and Characterization of an Extracellular Laccase from Phlebia radiata Strain BP-11-2 That Decolorizes Fungal Melanin. Biosci Biotechnol Biochem. 2014;73: 939–942. doi: 10.1271/bbb.80740 19352024
29. Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, et al. Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J Appl Microbiol. 2008;105: 2065–75. doi: 10.1111/j.1365-2672.2008.03924.x 19120652
30. Moţ AC, Pârvu M, Damian G, Irimie FD, Darula Z, Medzihradszky KF, et al. A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochem. 2012;47: 968–975. doi: 10.1016/j.procbio.2012.03.006
31. Lupan A, Matyas C, Mot A, Silaghi-Dumitrescu R. CAN GEOMETRICAL DISTORTIONS MAKE A LACCASE CHANGE COLOR FROM BLUE TO YELLOW? Stud Univ Babes-Bolyai Chem. 2011. Available: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000299819300027&KeyUID=WOS:000299819300027
32. LEONTIEVSKY A, VARES T, LANKINEN P, SHERGILL J, POZDNYAKOVA N, MYASOEDOVA N, et al. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett. 1997;156: 9–14. doi: 10.1111/j.1574-6968.1997.tb12698.x 9368354
33. Shleev S V, Morozova O V, Nikitina O V, Gorshina ES, Rusinova T V, Serezhenkov VA, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. Biochimie. 2004;86: 693–703. doi: 10.1016/j.biochi.2004.08.005 15556280
34. Lee D-Y, Chang G-D. Electrolytic reduction: modification of proteins occurring in isoelectric focusing electrophoresis and in electrolytic reactions in the presence of high salts. Anal Chem. 2009;81: 3957–64. doi: 10.1021/ac900281n 19438264
35. Radi R. Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Proc Natl Acad Sci U S A. 2013;46: 550–9. doi: 10.1021/ar300234c 23157446
36. Akerström B, Maghzal GJ, Winterbourn CC, Kettle AJ. The lipocalin alpha1-microglobulin has radical scavenging activity. J Biol Chem. 2007;282: 31493–503. doi: 10.1074/jbc.M702624200 17766242
37. Wynn RM, Sarkar HK, Holwerda RA, Knaff DB. Fluorescence associated with the type 3 copper center of laccase. FEBS Lett. 1983;156: 23–28. doi: 10.1016/0014-5793(83)80240-3
38. Rodakiewicz-Nowak J, Haber J, Pozdnyakova N, Leontievsky A, Golovleva LA. Effect of ethanol on enzymatic activity of fungal laccases. Biosci Rep. 1999;19: 589–600. Available: http://www.ncbi.nlm.nih.gov/pubmed/10841275 doi: 10.1023/a:1020223130115 10841275
39. Chen C-C, Hwang J-K, Yang J-M. (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics. 2009;10: 366. doi: 10.1186/1471-2105-10-366 19878598
40. Wallner B, Elofsson A. Can correct protein models be identified? Protein Sci. 2003;12: 1073–86. doi: 10.1110/ps.0236803 12717029
41. KAY BK, WILLIAMSON MP, SUDOL M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 2000;14: 231–241. Available: http://www.fasebj.org/content/14/2/231.full 10657980
42. Chin KC, Li GG, Ting JP. Importance of acidic, proline/serine/threonine-rich, and GTP-binding regions in the major histocompatibility complex class II transactivator: generation of transdominant-negative mutants. Proc Natl Acad Sci U S A. 1997;94: 2501–6. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=20117&tool=pmcentrez&rendertype=abstract doi: 10.1073/pnas.94.6.2501 9122224
43. Andberg M, Hakulinen N, Auer S, Saloheimo M, Koivula A, Rouvinen J, et al. Essential role of the C-terminus in Melanocarpus albomyces laccase for enzyme production, catalytic properties and structure. FEBS J. 2009;276: 6285–300. doi: 10.1111/j.1742-4658.2009.07336.x 19780817
44. Pardo I, Camarero S. Laccase engineering by rational and evolutionary design. Cell Mol Life Sci. 2015;72: 897–910. doi: 10.1007/s00018-014-1824-8 25586560
45. Lyashenko A V, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, et al. X-ray structural studies of the fungal laccase from Cerrena maxima. J Biol Inorg Chem. 2006;11: 963–973. doi: 10.1007/s00775-006-0158-x 16944230
46. Josephy PD, Eling T, Mason RP. The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257: 3669–75. Available: http://www.ncbi.nlm.nih.gov/pubmed/6277943 6277943
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy