Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System
Autoři:
Amir Borna aff001; Tony R. Carter aff001; Anthony P. Colombo aff001; Yuan-Yu Jau aff001; Jim McKay aff002; Michael Weisend aff003; Samu Taulu aff004; Julia M. Stephen aff005; Peter D. D. Schwindt aff001
Působiště autorů:
Sandia National Laboratories, Albuquerque, NM, United States of America
aff001; Candoo Systems Inc., Coquitlam, BC, Canada
aff002; StimScience, Inc., Berkeley, CA, United States of America
aff003; University of Washington Seattle, Seattle, WA, United States of America
aff004; The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227684
Souhrn
A non-invasive functional-brain-imaging system based on optically-pumped-magnetometers (OPM) is presented. The OPM-based magnetoencephalography (MEG) system features 20 OPM channels conforming to the subject’s scalp. We have conducted two MEG experiments on three subjects: assessment of somatosensory evoked magnetic field (SEF) and auditory evoked magnetic field (AEF) using our OPM-based MEG system and a commercial MEG system based on superconducting quantum interference devices (SQUIDs). We cross validated the robustness of our system by calculating the distance between the location of the equivalent current dipole (ECD) yielded by our OPM-based MEG system and the ECD location calculated by the commercial SQUID-based MEG system. We achieved sub-centimeter accuracy for both SEF and AEF responses in all three subjects. Due to the proximity (12 mm) of the OPM channels to the scalp, it is anticipated that future OPM-based MEG systems will offer enhanced spatial resolution as they will capture finer spatial features compared to traditional MEG systems employing SQUIDs.
Klíčová slova:
Head – Lasers – Magnetic fields – Magnetic resonance imaging – Magnetoencephalography – Magnetometers – Scalp – Vapors
Zdroje
1. Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys. 1993;65(2):413–97.
2. Aydin U, Vorwerk J, Dumpelmann M, Kupper P, Kugel H, Heers M, et al. Combined EEG/MEG Can Outperform Single Modality EEG or MEG Source Reconstruction in Presurgical Epilepsy Diagnosis. Plos One. 2015;10(3):29.
3. Hari R, Puce A. MEG-EEG Primer: Oxford University Press; 2007.
4. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine and Biology. 2006;51(7):1759–68. doi: 10.1088/0031-9155/51/7/008 16552102
5. Taulu S, Kajola M. Presentation of electromagnetic multichannel data: The signal space separation method. Journal of Applied Physics. 2005;97(12).
6. Shah VK, Wakai RT. A compact, high performance atomic magnetometer for biomedical applications. Physics in Medicine and Biology. 2013;58(22):8153–61. doi: 10.1088/0031-9155/58/22/8153 24200837
7. Kominis IK, Kornack TW, Allred JC, Romalis MV. A subfemtotesla multichannel atomic magnetometer. Nature. 2003;422:596–9. doi: 10.1038/nature01484 12686995
8. Colombo AP, Carter TR, Borna A, Jau Y-Y, Johnson CN, Dagel AL, et al. Four-channel optically pumped atomic magnetometer for magnetoencephalography. Optics Express. 2016;24(14):15403–16. doi: 10.1364/OE.24.015403 27410816
9. Xia H, Baranga AB-A, Hoffman D, Romalis MV. Magnetoencephalography with an atomic magnetometer. Applied Physics Letters. 2006;89(21):211104.
10. Johnson C, Schwindt PDD, Weisend M. Magnetoencephalography with a two-color pump-probe, fiber-coupled atomic magnetometer. Applied Physics Letters. 2010;97(24):243703–3.
11. Knappe S, Sander TH, Kosch O, Wiekhorst F, Kitching J, Trahms L. Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Applied Physics Letters. 2010;97(13).
12. Boto E, Meyer SS, Shah V, Alem O, Knappe S, Kruger P, et al. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage. 2017;149:404–14. doi: 10.1016/j.neuroimage.2017.01.034 28131890
13. Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature. 2018;555(7698):657–+. doi: 10.1038/nature26147 29562238
14. Borna A, Carter TR, Goldberg JD, Colombo AP, Jau YY, Berry C, et al. A 20-channel magnetoencephalography system based on optically pumped magnetometers. Physics in Medicine and Biology. 2017;62(23):8909–23. doi: 10.1088/1361-6560/aa93d1 29035875
15. Alem O, Sander TH, Mhaskar R, LeBlanc J, Eswaran H, Steinhoff U, et al. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Physics in Medicine and Biology. 2015;60(12):4797–811. doi: 10.1088/0031-9155/60/12/4797 26041047
16. Alem O, Benison AM, Barth DS, Kitching J, Knappe S. Magnetoencephalography of Epilepsy with a Microfabricated Atomic Magnetrode. J Neurosci. 2014;34(43):14324–7. doi: 10.1523/JNEUROSCI.3495-14.2014 25339745
17. Cohen D. MAGNETOENCEPHALOGRAPHY—DETECTION OF BRAINS ELECTRICAL-ACTIVITY WITH A SUPERCONDUCTING MAGNETOMETER. Science. 1972;175(4022):664–+. doi: 10.1126/science.175.4022.664 5009769
18. Okada Y, Hamalainen M, Pratt K, Mascarenas A, Miller P, Han M, et al. BabyMEG: A whole-head pediatric magnetoencephalography system for human brain development research. Rev Sci Instrum. 2016;87(9):094301. doi: 10.1063/1.4962020 27782541
19. Dupontro J, Haroche S, Cohentan C. DETECTION OF VERY WEAK MAGNETIC FIELDS (10-9GAUSS) BY 87RB-ZERO-FIELD LEVEL CROSSING RESONANCES. Phys Lett A. 1969;A 28(9):638–&.
20. Happer W. Optical-Pumping. Reviews of Modern Physics. 1972;44(2):169–&.
21. Zetter R, Iivanainen J, Stenroos M, Parkkonen L. Requirements for Coregistration Accuracy in On-Scalp MEG. Brain Topogr. 2018;31(6):931–48. doi: 10.1007/s10548-018-0656-5 29934728
22. Cohentannoudji C, Dupontro J. EXPERIMENTAL STUDY OF ZEEMAN LIGHT SHIFTS IN WEAK MAGNETIC-FIELDS. Physical Review a-General Physics. 1972;5(2):968–+.
23. Seltzer SJ, Romalis MV. Unshielded three-axis vector operation of a spin-exchange-relaxation-free atomic magnetometer. Applied Physics Letters. 2004;85(20):4804–6.
24. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience. 2011;2011:9.
25. Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis. New York: JOHN WILEY & SONS, INC.; 2001.
26. Escudero J, Hornero R, Abasolo D, Fernandez A, Lopez-Coronado M. Artifact removal in magnetoencephalogram background activity with independent component analysis. Ieee Transactions on Biomedical Engineering. 2007;54(11):1965–73. doi: 10.1109/TBME.2007.894968 18018691
27. Scherg M. Fundamentals of dipole source potential analysis;. In: Grandori F, Hoke M, Romani GL, editors. Auditory Evoked Magnetic Fields and Electric Potentials. 6. Basel: Karger; 1990. p. 40–69.
28. Nolte G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Physics in Medicine and Biology. 2003;48(22):3637–52. doi: 10.1088/0031-9155/48/22/002 14680264
29. Uusitalo M, Ilmoniemi R. Signal-space projection method for separating MEG or EEG into components. Medical and Biological Engineering and Computing. 1997;35(2):135–40. doi: 10.1007/bf02534144 9136207
30. Forss N, Hietanen M, Salonen O, Hari R. Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain. 1999;122:1889–99. doi: 10.1093/brain/122.10.1889 10506091
31. Whalen C, Maclin EL, Fabiani M, Gratton G. Validation of a Method for Coregistering Scalp Recording Locations With 3D Structural MR Images. Human Brain Mapping. 2008;29(11):1288–301. doi: 10.1002/hbm.20465 17894391
32. Chella F, Marzetti L, Stenroos M, Parkkonen L, Ilmoniemi RJ, Romani GL, et al. The impact of improved MEG-MRI co-registration on MEG connectivity analysis. Neuroimage. 2019;197:354–67. doi: 10.1016/j.neuroimage.2019.04.061 31029868
33. Iivanainen J, Stenroos M, Parkkonen L. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays. NeuroImage. 2017;147:542–53. doi: 10.1016/j.neuroimage.2016.12.048 28007515
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy