#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Characterization of black patina from the Tiber River embankments using Next-Generation Sequencing


Autoři: Federica Antonelli aff001;  Alfonso Esposito aff002;  Ludovica Calvo aff003;  Valerio Licursi aff004;  Philippe Tisseyre aff005;  Sandra Ricci aff006;  Manuela Romagnoli aff001;  Silvano Piazza aff002;  Francesca Guerrieri aff003
Působiště autorů: Department of Innovation of Biological Systems, Food and Forestry (DIBAF), Tuscia University, Viterbo, Italy aff001;  Department of Cellular, Computational and Integrative Biology–CIBIO, University of Trento, Trento, Italy aff002;  Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy aff003;  Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy aff004;  Soprintendenza del Mare, Regione Sicilia, Palermo, Italy aff005;  Biology Laboratory, Istituto Superiore per la Conservazione e per il Restauro (ISCR), Rome, Italy aff006;  Epigenetics and epigenomic of hepatocellular carcinoma, U1052, Cancer Research Center of Lyon (CRCL), Lyon, France aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227639

Souhrn

Black patinas are very common biological deterioration phenomena on lapideous artworks in outdoor environments. These substrates, exposed to sunlight, and atmospheric and environmental agents (i.e. wind and temperature changes), represent extreme environments that can only be colonized by highly versatile and adaptable microorganisms. Black patinas comprise a wide variety of microorganisms, but the morphological plasticity of most of these microorganisms hinders their identification by optical microscopy. This study used Next-Generation Sequencing (NGS) (including shotgun and amplicon sequencing) to characterize the black patina of the travertine embankments (muraglioni) of the Tiber River in Rome (Italy). Overall, the sequencing highlighted the rich diversity of bacterial and fungal communities and allowed the identification of more than one hundred taxa. NGS confirmed the relevance of coccoid and filamentous cyanobacteria observed by optical microscopy and revealed an informative landscape of the fungal community underlining the presence of microcolonial fungi and phylloplane yeasts. For the first time high-throughput sequencing allowed the exploration of the expansive diversity of bacteria in black patina, which has so far been overlooked in routine analyses. Furthermore, the identification of euendolithic microorganisms and weathering agents underlines the biodegradative role of black patina, which has often been underestimated. Therefore, the use of NGS to characterize black patinas could be useful in choosing appropriate conservation treatments and in the monitoring of stone colonization after the restoration interventions.

Klíčová slova:

Bacteria – Bacterial taxonomy – Cyanobacteria – Fungi – Ribosomal RNA – Sequence databases – Shotgun sequencing – Optical microscopy


Zdroje

1. Krumbein WE. Pinta and Patina–How Microbes change Surfaces. Geomicrobiol—Geomicrobiol ICBM Univ Oldenbg. 1997;

2. Dong H, Rech JA, Jiang H, Sun H, Buck BJ. Endolithnic cyanobacteria in soil gypsum: Occurences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res Biogeosciences. 2007;112: 1–11. doi: 10.1029/2006JG000385

3. McNamara C, Perry TD, Zinn M, Breuker M, Muller R, Hernandez-Duque G, et al. Microbial Processes in the Deterioration of Maya Archaeological Buildings in Southern Mexico. Art, Biology, and Conservation: Biodeterioration of Works of Art. New York: The Metropolitan Museum of Art; 2003. pp. 248–265.

4. Golubić S, Pietrini A, Ricci S. Euendolithic activity of the cyanobacterium Chroococcus lithophilus Erc. in biodeterioration of the pyramid of Caius Cestius, Rome, Italy. Int Biodeterior Biodegradation. 2015;100: 7–16. Available: https://www.sciencedirect.com/science/article/pii/S0964830515000311

5. Gaylarde CC, Gaylarde PM, Neilan BA. Endolithic phototrophs in built and natural stone. Curr Microbiol. 2012;65: 183–188. doi: 10.1007/s00284-012-0123-6 22614098

6. De Leo F, Antonelli F, Pietrini AM, Ricci S, Urzì C. Study of the euendolithic activity of black meristematic fungi isolated from a marble statue in the Quirinale Palace’s Gardens in Rome, Italy. Facies. 2019;65: 18. doi: 10.1007/s10347-019-0564-5

7. Vergès-Belmin V. Illustrated glossary on stone deterioration patterns = Glossaire illustré sur les formes d’altération de la pierre. Internatio. 2008.

8. Gorbushina AA. Life on the rocks. Environ Microbiol. 2007;9: 1613–1631. doi: 10.1111/j.1462-2920.2007.01301.x 17564597

9. Isola D, Zucconi L, Onofri S, Caneva G, de Hoog GS, Selbmann L. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 2016;76: 75–96. doi: 10.1007/s13225-015-0342-9

10. Krumbein WE. Patina and cultural heritage: a geomicrobiologist’s perspective. Cult Herit Res a pan-European Chall. 2003; 39–47.

11. Urzì C, Wollenzien U, Criseo G, Krumbein WE. Biodiversity of the rock inhabiting microflora with special reference to black fungi and black yeasts. Microb Divers Ecosyst Funct. 1995;16: 289–302.

12. Castenholz RW, Garcia-Pichel F. Cyanobacterial Responses to UV Radiation. Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands; 2012. pp. 481–499. doi: 10.1007/978-94-007-3855-3_19

13. Franklin LA, Osmond CB, Larkum AWD. Photoinhibition, UV-B and Algal Photosynthesis. Photosynthesis in algae. Dordrecht: Springer; 2003. pp. 351–384. doi: 10.1007/978-94-007-1038-2_16

14. Sterflinger K, De Baere R, De Hoog GS, De Wachter R, Krumbein WE, Haase G. Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 1997;72: 349–363. doi: 10.1023/A:1000570429688

15. Golubic S, Friedmann EI, Schneider J. The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res. 1981;51: 475–478. Available: https://pubs.geoscienceworld.org/sepm/jsedres/article-abstract/51/2/475/97360

16. Hauer T, Mühlsteinová R, Bohunická M, Kaštovský J, Mareš J. Diversity of cyanobacteria on rock surfaces. Biodivers Conserv. 2015;24: 759–779. doi: 10.1007/s10531-015-0890-z

17. Hirsch P, Eckhardt FEW, Palmer RJ Jr. Methods for the study of rock-inhabiting microorganisms—a mini review. J Microbiol Methods. 1995;23: 143–167. Available: https://www.sciencedirect.com/science/article/pii/016770129500017F

18. Jaag O. Untersuchungen über die Vegetation und Biologie der Algen des näckten gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamen Flora der Schweiz. 1945;9: 1–560.

19. Albertano P. Cyanobacterial Biofilms in Monuments and Caves. Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands; 2012. pp. 317–343. doi: 10.1007/978-94-007-3855-3_11

20. Ortega-Calvo JJ, Ariño X, Hernandez-Marine M, Saiz-Jimenez C. Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ. 1995;167: 329–341. Available: https://www.sciencedirect.com/science/article/pii/004896979504593P

21. De Leo F, Criseo G, Urzi C. Impact of surrounding vegetation and soil on the colonization of marble statues by dematiaceous fungi. Proceeding of the eighth international congress on deterioration and conservation of stone. 1996. pp. 625–630. Available: http://iscs.icomos.org/pdf-files/Berlin1996/deleetal.pdf

22. Sterflinger K, de Hoog GS, Haase G. Phylogeny and ecology of meristematic ascomycetes. Stud Mycol. 1999;43: 5–22.

23. Gorbushina A. Microcolonial Fungi: Survival Potential of Terrestrial Vegetative Structures. Astrobiology. 2003;3: 543–554. doi: 10.1089/153110703322610636 14678663

24. Gueidan C, Villaseñor CR, De Hoog GS, Gorbushina AA, Untereiner WA, Lutzoni F. A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Stud Mycol. 2008;61: 111–119. Available: https://www.sciencedirect.com/science/article/pii/S0166061614602013

25. Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, et al. Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol. 2009;64: 123–133. doi: 10.3114/sim.2009.64.06 20169026

26. Ruibal C, Platas G, Bills GF. High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia Mol Phylogeny Evol Fungi. 2008;21: 93–110. doi: 10.3767/003158508X371379 20396580

27. McNamara CJ, Mitchell R. Microbial deterioration of historic stone. Front Ecol Environ. 2005;3: 445–451. doi: 10.1890/1540-9295(2005)003[0445:MDOHS]2.0.CO;2

28. McNamara CJ, Perry TD, Bearce KA, Hernandez-Duque G, Mitchell R. Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microb Ecol. 2006;51: 51–64. doi: 10.1007/s00248-005-0200-5 16391878

29. Schabereiter-Gurtner C, Saiz-Jimenez C, Pinar G, Lubitz W, Rolleke S. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environ Microbiol. 2002;4: 392–400. doi: 10.1046/j.1462-2920.2002.00303.x 12123475

30. Portillo MC, Gonzalez JM. Microbial community diversity and the complexity of preserving cultural heritage. Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series No 2. Smithsonian Institution Scholarly Press; 2011. pp. 19–28.

31. McNamara C, Konkol NR, Ross BP, Mitchell R. Characterization of Bacterial Colonization of Stone at Global and Local Scales. Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series, No 2. Smithsonian Institution Scholarly Press; 2011. pp. 29–36.

32. Tang Y, Lian B, Dong H, Liu D, Hou W. Endolithic Bacterial Communities in Dolomite and Limestone Rocks from the Nanjiang Canyon in Guizhou Karst Area (China). Geomicrobiol J. 2012;29: 213–225. doi: 10.1080/01490451.2011.558560

33. Cortesi C, Leoni M. Studio sedimentologico e geochimico del travertino di un sondaggio a Bagni di Tivoli. Period di Mineral. 1958;27: 407–458.

34. Caneva G, Di Stefano D, Giampaolo C. Stone cavity and porosity as a limiting factor for biological colonisation: the travertine of Lungotevere (Rome). Proc 10th Int Congr Deterior Conserv Stone. 2004;1: 227–232. Available: https://www.researchgate.net/profile/Ciriaco_Giampaolo/publication/303483539_Stone_cavity_and_porosity_as_limiting_factor_for_biological_colonisation_the_travertine_of_Lungotevere_Rome/links/577be95708aec3b743366bac/Stone-cavity-and-porosity-as-limiting-f

35. Conte G, Del Bon A, Gafà RM, Martarelli L, Monti GM. Analisi meteo-climatica del territorio di Roma nel periodo 1984–2014. Acque Sotter—Ital J Groundw. 2016;AS15071: 33–45. doi: 10.7343/AS-130-15-0157

36. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13: 581. Available: https://www.nature.com/nmeth/journal/v13/n7/abs/nmeth.3869.html doi: 10.1038/nmeth.3869 27214047

37. Katoh K, Standley DM. MAFFT: Iterative Refinement and Additional Methods. Multiple sequence alignment methods. Totowa, NJ: Humana press; 2014. pp. 131–146. doi: 10.1007/978-1-62703-646-7_8 24170399

38. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26: 1641–1650. Available: https://academic.oup.com/mbe/article-abstract/26/7/1641/1128976 doi: 10.1093/molbev/msp077 19377059

39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41: D590–D596. doi: 10.1093/nar/gks1219 23193283

40. Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018;47: D259–D264. doi: 10.1093/nar/gky1022 30371820

41. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102: 3–11. doi: 10.1016/j.ymeth.2016.02.020 27012178

42. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3: e1319. doi: 10.7717/peerj.1319 26500826

43. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11: 1144–1146. doi: 10.1038/nmeth.3103 25218180

44. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4: 2304. doi: 10.1038/ncomms3304 23942190

45. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34: 2115–2122. doi: 10.1093/molbev/msx148 28460117

46. Ogawa A, Celikkol-Aydin S, Gaylarde C, Baptista-Neto JA, Beech I. Microbiomes of Biofilms on Decorative Siliceous Stone: Drawbacks and Advantages of Next Generation Sequencing. Curr Microbiol. 2017;74: 848–853. doi: 10.1007/s00284-017-1257-3 28466090

47. Pentecost A, Whitton BA. Subaerial Cyanobacteria. Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands; 2012. pp. 291–316. doi: 10.1007/978-94-007-3855-3_10

48. Potts M. Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol. 1999;34: 319–328. doi: 10.1080/09670269910001736382

49. Garcia-Pichel F, Castenholz RW. Occurrence of UV-Absorbing, Mycosporine-Like Compounds among Cyanobacterial Isolates and an Estimate of Their Screening Capacity. Appl Environ Microbiol. 1993;59: 163–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/16348839 16348839

50. Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW. Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch Microbiol. 2002;177: 322–331. doi: 10.1007/s00203-001-0395-x 11889486

51. Ecology Büdel B. and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur J Phycol. 1999;34: 361–370.

52. Viles H. Ecological perspectives on rock surface weathering: towards a conceptual model. Geomorphology. 1995;13: 21–35. Available: https://www.sciencedirect.com/science/article/pii/0169555X9500024Y

53. Garcia-Vallès MC, Urzì C, Vendrell-Saz M. Weathering processes on the rock surface in natural outcrops: the case of an ancient marble quarry (Belevi, Turkey). Environ Geol. 2002;41: 889–897. doi: 10.1007/s00254-001-0466-y

54. Siegesmund S, Weiss T, Vollbrecht A, editors. Natural stone, weathering phenomena, conservation strategies and case studies [Internet]. Geological Society special publication n. 205. London: Geological Society of London; 2002. Available: https://sp.lyellcollection.org/content/205/1/1.short

55. Villa F, Stewart PS, Klapper I, Jacob JM. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. Bioscience. 2016;66: 285–294. Available: https://academic.oup.com/bioscience/article-abstract/66/4/285/2464002

56. Pentecost A. A note on the colonization of limestone rocks by cyanobacteria. Arch fur Hydrobiol. 1992;124: 167–172.

57. Glaeser SP, Kämpfer P. The Family Sphingomonadaceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 2014; 641–707. Available: https://link.springer.com/content/pdf/10.1007/978-3-642-30197-1_302.pdf

58. Al-Thani RF, Potts M. Cyanobacteria, Oil–and Cyanofuel? Ecology of Cyanobacteria II. Dordrecht: Springer Netherlands; 2012. pp. 427–440. doi: 10.1007/978-94-007-3855-3_16

59. Dedysh SN, Sinninghe Damsté JS. Acidobacteria. eLS. Chichester, UK: John Wiley & Sons, Ltd; 2018. pp. 1–10. doi: 10.1002/9780470015902.a0027685

60. Raj HD, Maloy SR. Family Spirosomaceae: Gram-Negative Ring-Forming Aerobic Bacteria. Crit Rev Microbiol. 1990;17: 329–364. doi: 10.3109/10408419009114761 2248690

61. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae. The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. 2014; 439–512. Available: https://link.springer.com/content/pdf/10.1007/978-3-642-30197-1_377.pdf

62. Rosenberg E. The Family Chitinophagaceae. prokaryotes other major lineages Bact Archaea. 2014; 493–495. Available: https://link.springer.com/content/pdf/10.1007/978-3-642-38954-2_137.pdf

63. Yoon M-H, Im W-T. Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol. 2007;57: 1834–1839. doi: 10.1099/ijs.0.65011-0 17684267

64. Baik KS, Kim MS, Lee JH, Lee SS, Im W-T, Seong CN. Flavisolibacter rigui sp. nov., isolated from freshwater of an artificial reservoir and emended description of the genus Flavisolibacter. Int J Syst Evol Microbiol. 2014;64: 4038–4042. doi: 10.1099/ijs.0.065664-0 25237148

65. Joo ES, Cha S, Kim MK, Jheong W, Seo T, Srinivasan S. Flavisolibacter swuensis sp. nov. Isolated from Soil. J Microbiol. 2015;53: 442–447. doi: 10.1007/s12275-015-5241-y 26115992

66. Normand P, Benson DR. Kineosporiaceae. Bergey’s Manual of Systematics of Archaea and Bacteria. Chichester, UK: John Wiley & Sons, Ltd; 2015. pp. 1–2. doi: 10.1002/9781118960608.fbm00025

67. Normand P, Benson DR. Quadrisphaera. Bergey’s Manual of Systematics of Archaea and Bacteria. Chichester, UK: John Wiley & Sons, Ltd; 2015. pp. 1–3. doi: 10.1002/9781118960608.gbm00055

68. Sterflinger K, Piñar G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl Microbiol Biotechnol. 2013;97: 9637–9646. doi: 10.1007/s00253-013-5283-1 24100684

69. Ricci S, De Leo F, Urzì C, Guerrieri F, Antonelli F. Advantages of a multidisciplinary approach in the study and the characterisation of black patinas. In: Macchia A, Masini N, La Russa MF, Prestileo F, editors. Dialogues in Cultural heritage, Books of Abstracts of the 6th YOCOCU Conference. Matera: YOCOCU, CNR–IBAM (Istituto per i Beni Archeologici e Monumentali); 2018. pp. 277–280.

70. Lee J-J, Kang M-S, Joo ES, Kim MK, Im W-T, Jung H-Y, et al. Spirosoma montaniterrae sp. nov., an ultraviolet and gamma radiation-resistant bacterium isolated from mountain soil. J Microbiol. 2015;53: 429–434. doi: 10.1007/s12275-015-5008-5 26115990

71. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA. Hymenobacter roseosalivarius gen. nov., sp. nov. from Continental Antarctic Soils and Sandstone: Bacteria of the Cytophaga/Flavobacterium/Bacteroides Line of Phylogenetic Descent. Syst Appl Microbiol. 1998;21: 374–383. doi: 10.1016/s0723-2020(98)80047-7 9841127

72. Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol. 2007;57: 1752–1756. doi: 10.1099/ijs.0.65033-0 17684250

73. Chung AP, Lopes A, Nobre MF, Morais P V. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol. 2010;33: 436–443. doi: 10.1016/j.syapm.2010.09.002 21051170

74. Han L, Wu S-J, Qin C-Y, Zhu Y-H, Lu Z-Q, Xie B, et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie Van Leeuwenhoek. 2014;105: 971–978. doi: 10.1007/s10482-014-0155-y 24677143

75. Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R, Gury J, et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol. 2012;80: 566–577. doi: 10.1111/j.1574-6941.2012.01320.x 22296311

76. Ortega-Morales BO, Gaylarde CC, Englert GE, Gaylarde PM. Analysis of Salt-Containing Biofilms on Limestone Buildings of the Mayan Culture at Edzna, Mexico. Geomicrobiol J. 2005;22: 261–268. doi: 10.1080/01490450500182524

77. Liu R, Li K, Zhang H, Zhu J, Joshi D. Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. J Microbiol. 2014;52: 898–907. doi: 10.1007/s12275-014-4075-3 25359267

78. del Carmen Montero-Calasanz M, Hofner B, Göker M, Rohde M, Spröer C, Hezbri K, et al. Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble. Biomed Res Int. 2014;2014: 1–11. doi: 10.1155/2014/914767 25114928

79. del Carmen Montero-Calasanz M, Göker M, Rohde M, Schumann P, Pötter G, Spröer C, et al. Geodermatophilus siccatus sp. nov., isolated from arid sand of the Saharan desert in Chad. Antonie Van Leeuwenhoek. 2013;103: 449–456. doi: 10.1007/s10482-012-9824-x 23076796

80. del Carmen Montero-Calasanz M, Göker M, Pötter G, Rohde M, Spröer C, Schumann P, et al. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad. Extremophiles. 2012;16: 903–909. doi: 10.1007/s00792-012-0486-4 23081798

81. del Carmen Montero-Calasanz, Goker M, Potter G, Rohde M, Sproer C, Schumann P, et al. Geodermatophilus normandii sp. nov., isolated from Saharan desert sand. Int J Syst Evol Microbiol. 2013;63: 3437–3443. doi: 10.1099/ijs.0.051201-0 23543496

82. Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E, Daffonchio D. Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol. 2001;3: 471–479. doi: 10.1046/j.1462-2920.2001.00217.x 11553237

83. Sghaier H, Hezbri K, Ghodhbane-Gtari F, Pujic P, Sen A, Daffonchio D, et al. Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes. ISME J. 2016;10: 21–29. doi: 10.1038/ismej.2015.108 26125681

84. Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MCH, et al. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 2004;14: 1025–35. doi: 10.1101/gr.1993504 15140832

85. Matallana-Surget S, Joux F, Raftery MJ, Cavicchioli R. The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol. 2009;11: 2660–2675. doi: 10.1111/j.1462-2920.2009.01992.x 19601963

86. Tanaka M, Earl AM, Howell HA, Park M-J, Eisen JA, Peterson SN, et al. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics. 2004;168: 21–33. doi: 10.1534/genetics.104.029249 15454524

87. Sert HB, Sümbül H, Sterflinger K. Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Antonie Van Leeuwenhoek. 2007;91: 217–227. doi: 10.1007/s10482-006-9111-9 17080290

88. Sterflinger K. Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev. 2010;24: 47–55. doi: 10.1016/j.fbr.2010.03.003

89. Frank-Kamenetskaya O V., Vlasov DY, Zelenskaya MS, Knauf I V., Timasheva MA. Decaying of the marble and limestone monuments in the urban environment. Case studies from Saint Petersburg, Russia. Stud UBB Geol. 2009;54: 17–22.

90. Páramo-Aguilera L, Ortega-Morales BO. Culturable fungi associated with urban stone surfaces in Mexico City. Electron J Biotechnol. 2012;15: 4.

91. Sterflinger K, Prillinger H. Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie Van Leeuwenhoek. 2001;80: 275–286. doi: 10.1023/a:1013060308809 11827213

92. Tang Y, Lian B. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China. Can J Microbiol. 2012;58: 685–693. doi: 10.1139/w2012-042 22571668

93. Wollenzien U, de Hoog GS, Krumbein WE, Urzí C. On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ. 1995;167: 287–294. doi: 10.1016/0048-9697(95)04589-S

94. Gómez-Cornelio S, Ortega-Morales O, Morón-Ríos A, Reyes-Estebanez M, de la Rosa-García S. Changes in fungal community composition of biofilms on limestone across a chronosequence in Campeche, Mexico. Acta Botánica Mex. 2016;117: 59–77. Available: https://www.redalyc.org/html/574/57447920006/

95. Sterflinger K, Krumbein WE. Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J. 1997;14: 219–230.

96. Gorbushina AA, Krumbein WE, Hamman CH, Panina L, Soukharjevski S, Wollenzien U. Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J. 1993;11: 205–221. doi: 10.1080/01490459309377952

97. Dornieden T, Gorbushina AA, Krumbein WE. Patina. Of Microbes and Art. Boston, MA: Springer US; 2000. pp. 105–119. doi: 10.1007/978-1-4615-4239-1_8

98. Crous PW, Schumacher RK, Wingfield MJ, Lombard L, Giraldo A, Christensen M, et al. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67: 81–118.

99. Jam Ashkezari S, Fotouhifar B. Diversity of endophytic fungi of common yew (Taxus baccata L.) in Iran. Mycol Prog. 2017;16: 247–256. doi: 10.1007/s11557-017-1274-4

100. Badalyan SM, Szafranski K, Hoegger PJ, Navarro-Gonzaléz M, Majcherczyk A, Kües U. New Armenian wood-associated coprinoid mushrooms: Coprinopsis strossmayeri and Coprinellus aff. radians. Diversity. 2011;3: 136–154. Available: https://www.mdpi.com/1424-2818/3/1/136

101. Pastirčáková K, Pastirčák M. Erysiphe platani causing powdery mildew of London plane in Hungary. Acta Phytopathol Entomol Hungarica. 2008;43: 31–36. doi: 10.1556/APhyt.43.2008.1.4

102. Glushakova AM, Kachalkin A V. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology. 2017;86: 128–135. doi: 10.1134/S0026261716060102

103. Crous PW, Schumacher RK, Wingfield MJ, Akulov A, Denman S, Roux J, et al. New and interesting fungi. 1. Fungal Syst Evol. 2018;1: 169–215. Available: https://www.ingentaconnect.com/content/wfbi/fuse/2018/00000001/00000001/art00009

104. Wijayawardene NN, Camporesi E, Bhat DJ, Song YU, Chethana KWT, Chukeatirote E, et al. Macrodiplodiopsis in Lophiostomataceae, Pleosporales. 2014;176: 192–200.

105. Inácio J, Portugal L, Spencer-Martins I, Fonseca A. Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured. FEMS Yeast Res. 2005;5: 1167–1183. Available: https://academic.oup.com/femsyr/article-abstract/5/12/1167/535391 doi: 10.1016/j.femsyr.2005.05.007 16081324

106. Prior R, Feige A, Begerow D. Antagonistic activity of the phyllosphere fungal community. Sydowia. 2017;69: 183–198. Available: https://www.verlag-berger.at/fileadmin/media_data/ebooks/20-Sydowia-69_Prior.pdf

107. Kemler M, Witfeld F, Begerow D, Yurkov A. Phylloplane Yeasts in Temperate Climates. Yeasts in Natural Ecosystems: Diversity. Cham: Springer International Publishing; 2017. pp. 171–197. doi: 10.1007/978-3-319-62683-3_6

108. Madhour A, Anke H, Mucci A, Davoli P, Weber RW. Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia (Tremellales, Heterobasidiomycetes, Fungi). Phytochemistry. 2005;66: 2617–2626. Available: https://www.sciencedirect.com/science/article/pii/S0031942205004577 doi: 10.1016/j.phytochem.2005.09.010 16257020

109. Malíček J, Palice Z, Vondrák J. New Lichen Records and Rediscoveries from the Czech Republic and Slovakia. Herzogia. 2015;27: 257–284. doi: 10.13158/heia.27.2.2014.257

110. Dietrich M. Die Flechtenvielfalt der mittelalterichen Museggmauer und ihren Türme in Luzern (Zentralschweiz): 100 weitere Arten. Meylania. 2015;56: 5–18.

111. Ariño X, Saiz-Jimenez C. Deterioration of the Elephant tomb (Necropolis of Carmona, Seville, Spain). Int Biodeterior Biodegrad. 1997;40: 233–239. doi: 10.1016/S0964-8305(97)00034-6

112. Sanchez-Moral S, Cañaveras JC, Benavente D, Fernandez-Cortes A, Cuezva S, Elez J, et al. A study on the state of conservation of the Roman Necropolis of Carmona (Sevilla, Spain). J Cult Herit. 2018;34: 185–197. doi: 10.1016/j.culher.2018.02.019

113. Baldasici O, Barbu-Tudoran L. Structural and elemental analysis of biodegraded artifacts. Ann Rom Soc Cell Biol. 2012;17: 213–219. Available: http://www.annalsofrscb.ro/archive/17 2/33.pdf

114. Uher B. Spatial distribution of cyanobacteria and algae from the tombstone in a historic cemetery in Bratislava, Slovakia. Fottea. 2008;9: 81–92. Available: http://fottea.czechphycology.cz/pdfs/fot/2009/01/07.pdf

115. Darienko T, Gruber M, Pröschold T, Schagerl M. Terrestrial microalgae on Viennese buildings [Internet]. Wien: Universität Wien, Projektreport. Vienna; 2013. Available: https://www.wien.gv.at/umweltschutz/nachhaltigkeit/pdf/gruber-markus-2013.pdf

116. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6: 703–713. Available: https://academic.oup.com/gbe/article-abstract/6/3/703/580436 doi: 10.1093/gbe/evu050 24625961

117. Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, et al. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome. 2019;7: 28. doi: 10.1186/s40168-019-0637-2 30782206

118. Morotomi M, Nagai F, Sakon H, Tanaka R. Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces. Int J Syst Evol Microbiol. 2009;59: 1895–1900. doi: 10.1099/ijs.0.008169-0 19567577

119. Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5: 627–640. Available: https://www.mdpi.com/1424-2818/5/3/627/htm

120. Bohr URM, Primus A, Zagoura A, Glasbrenner B, Wex T, Malfertheiner P. A Group-Specific PCR Assay for the Detection of Helicobacteraceae in Human Gut. Helicobacter. 2002;7: 378–383. doi: 10.1046/j.1523-5378.2002.00113.x 12485125

121. Hedlund BP, Derrien M. Akkermansiaceae fam. nov. Bergey’s Manual of Systematics of Archaea and Bacteria. Chichester, UK: John Wiley & Sons, Ltd; 2015. pp. 1–1. doi: 10.1002/9781118960608.fbm00257

122. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406: 959–964. doi: 10.1038/35023079 10984043

123. Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatology Venereol. 2018;32: 5–14. doi: 10.1111/jdv.15043 29894579

124. Kampfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol. 2012;62: 364–369. doi: 10.1099/ijs.0.032441-0 21441374

125. Crespo Erchiga V, Ojeda Martos A, Vera Casaño A, Crespo Erchiga A, Sanchez Fajardo F. Malassezia globosa as the causative agent of pityriasis versicolor. Br J Dermatol. 2000;143: 799–803. doi: 10.1046/j.1365-2133.2000.03779.x 11069459

126. Trouillas FP, Gubler WD. Pathogenicity of Diatrypaceae species in grapevines in California. Plant Dis. 2010;94: 867–872. doi: 10.1094/PDIS-94-7-0867 30743554


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#