Acute high-intensity and moderate-intensity interval exercise do not change corticospinal excitability in low fit, young adults
Autoři:
Jenin El-Sayes aff001; Claudia V. Turco aff001; Lauren E. Skelly aff001; Mitchell B. Locke aff001; Martin J. Gibala aff001; Aimee J. Nelson aff001
Působiště autorů:
Department of Kinesiology, McMaster University, Hamilton, Canada
aff001
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227581
Souhrn
Previous research has demonstrated a lack of neuroplasticity induced by acute exercise in low fit individuals, but the influence of exercise intensity is unclear. In the present study, we assessed the effect of acute high-intensity (HI) or moderate-intensity (MOD) interval exercise on neuroplasticity in individuals with low fitness, as determined by a peak oxygen uptake (VO2peak) test (n = 19). Transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability via area under the motor evoked potential (MEP) recruitment curve before and following training. Corticospinal excitability was unchanged after HI and MOD, suggesting no effect of acute exercise on neuroplasticity as measured via TMS in sedentary, young individuals. Repeated bouts of exercise, i.e., physical training, may be required to induce short-term changes in corticospinal excitability in previously sedentary individuals.
Klíčová slova:
Electromyography – Exercise – Heart rate – Motor evoked potentials – Neuronal plasticity – Physical activity – Transcranial magnetic stimulation – Young adults
Zdroje
1. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clinical Neurophysiology. 2015. pp. 1847–1868. doi: 10.1016/j.clinph.2014.08.028 25534482
2. Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One. 2015;10: e0141393. doi: 10.1371/journal.pone.0141393 26506413
3. McDonnell MN, Buckley JD, Opie GM, Ridding MC, Semmler JG. A single bout of aerobic exercise promotes motor cortical neuroplasticity. J Appl Physiol. 2013;114: 1174–1182. doi: 10.1152/japplphysiol.01378.2012 23493367
4. Singh AM, Duncan RE, Neva JL, Staines WR. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Sci Med Rehabil. 2014;6: 23. doi: 10.1186/2052-1847-6-23 25031838
5. Smith AE, Goldsworthy MR, Garside T, Wood FM, Ridding MC. The influence of a single bout of aerobic exercise on short-interval intracortical excitability. Exp Brain Res. 2014;232: 1875–1882. doi: 10.1007/s00221-014-3879-z 24570388
6. Lulic T, El-Sayes J, Fassett HJ, Nelson AJ. Physical activity levels determine exercise-induced changes in brain excitability. PLoS One. 2017;12: e0173672. doi: 10.1371/journal.pone.0173672 28278300
7. Neva JL, Brown KE, Mang CS, Francisco BA, Boyd LA. An acute bout of exercise modulates both intracortical and interhemispheric excitability. Eur J Neurosci. 2017;45: 1343–1355. doi: 10.1111/ejn.13569 28370664
8. El-Sayes J, Turco CV., Skelly LE, Nicolini C, Fahnestock M, Gibala MJ, et al. The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience. 2019;410: 29–40. doi: 10.1016/j.neuroscience.2019.04.054 31077738
9. MacDonald MM, Khan H, Kraeutner SN, Usai F, Rogers EA, Kimmerly DS, et al. Intensity of acute aerobic exercise but not aerobic fitness impacts on corticospinal excitability. Appl Physiol Nutr Metab. 2019; doi: 10.1139/apnm-2018-0643 30649908
10. Stavrinos EL, Coxon JP. High-intensity interval exercise promotes motor cortex disinhibition and early motor skill consolidation. J Cogn Neurosci. 2017;29: 593–604. doi: 10.1162/jocn_a_01078 27897671
11. Andrews SC, Curtin D, Hawi Z, Wongtrakun J, Stout JC, Coxon JP. Intensity Matters: High-intensity Interval Exercise Enhances Motor Cortex Plasticity More Than Moderate Exercise. Cereb Cortex. 2019; doi: 10.1093/cercor/bhz075 31041988
12. Opie G, Semmler J. Acute exercise at different intensities influences corticomotor excitabiity and performance of a ballistic thumb training task. Neuroscience. 2019;412: 29–39. doi: 10.1016/j.neuroscience.2019.05.049 31170481
13. Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30: 464–472. doi: 10.1016/j.tins.2007.06.011 17765329
14. Schwarz AJ, Brasel JA, Hintz RL, Mohan S, Cooper DM. Acute effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab. 1996;81: 3492–3497. doi: 10.1210/jcem.81.10.8855791 8855791
15. Kraemer RR, Durand RJ, Acevedo EO, Johnson LG, Kraemer GR, Hebert EP, et al. Rigorous Running Increases Growth Hormone and Insulin-Like Growth Factor-I without Altering Ghrelin. Exp Biol Med. 2004;229: 240–246. doi: 10.1177/153537020422900304 14988516
16. Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39: 728–734. doi: 10.1249/mss.0b013e31802f04c7 17414812
17. Nofuji Yu, Suwa Masataka, Sasaki Haruka, Ichimiya Atsushi, N R and K S. Different Circulating BDNF Responses to Acute Exercise Between Physically Active and Sedentary Subjects. J Sports Sci Med. 2012;11: 83–88. Available: http://www.jssm.org/vol11/n1/12/v11n1-12text.php 24137066
18. Rojas Vega S, Hollmann W, Vera Wahrmann B, Strüder HK. PH buffering does not influence BDNF responses to exercise. Int J Sports Med. 2012;33: 8–12. doi: 10.1055/s-0031-1285929 22127561
19. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, et al. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol Learn Mem. 2014;116: 46–58. doi: 10.1016/j.nlm.2014.08.004 25128877
20. Thomas R, Johnsen LK, Geertsen SS, Christiansen L, Ritz C, Roig M, et al. Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS One. 2016;11: e0159589. doi: 10.1371/journal.pone.0159589 27454423
21. Do Lee C, Folsom AR, Blair SN. Physical activity and stroke risk: A meta-analysis. Stroke. 2003;34: 2475–2481. doi: 10.1161/01.STR.0000091843.02517.9D 14500932
22. Li X, Charalambous CC, Reisman DS, Morton SM. A short bout of high-intensity exercise alters ipsilesional motor cortical excitability post-stroke. Top Stroke Rehabil. 2019; doi: 10.1080/10749357.2019.1623458 31144609
23. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017;595: 2915–2930. doi: 10.1113/JP273196 27748956
24. Saucedo Marquez CM, Vanaudenaerde B, Troosters T, Wenderoth N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J Appl Physiol. 2015;119: 1363–1373. doi: 10.1152/japplphysiol.00126.2015 26472862
25. Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol Rep. 2015;3. doi: 10.14814/phy2.12462 26359238
26. Jimenez-Pavon D, Lavie CJ. High-intensity intermittent training versus moderate-intensity intermittent training: Is it a matter of intensity or intermittent efforts? Br J Sports Med. 2017;51: 1319–1320. doi: 10.1136/bjsports-2016-097015 28137785
27. Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, et al. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. J Appl Physiol. 2018;126: 431–443. doi: 10.1152/japplphysiol.00594.2018 30571289
28. Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia. 1971;9: 97–113. doi: 10.1016/0028-3932(71)90067-4 5146491
29. CSEP. CSEP-PARTH Physical Activity Training for Health. 2013.
30. Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Group TS of TMSC. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinial practice and research. Clinial Neurophysiol. 2009;120: 2008–2039.
31. Warburton DER, Gledhill N, Jamnik VK, Bredin SSD, McKenzie DC, Stone J, et al. Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document 2011. Appl Physiol Nutr Metab. 2011;36: S266–S298. doi: 10.1139/h11-062 21800945
32. Gillen JB, Percival ME, Skelly LE, Martin BJ, Tan RB, Tarnopolsky MA, et al. Three minutes of all-out intermittent exercise per week increases skeletal muscle oxidative capacity and improves cardiometabolic health. PLoS One. 2014;9: e111489. doi: 10.1371/journal.pone.0111489 25365337
33. Allison MK, Baglole JH, Martin BJ, MacInnis MJ, Gurd BJ, Gibala MJ. Brief Intense Stair Climbing Improves Cardiorespiratory Fitness. Med Sci Sports Exerc. 2017;49: 298–307. doi: 10.1249/MSS.0000000000001188 28009784
34. Craig Marshall A. L., Sjöström M., Bauman A. E., Booth M. L., Ainsworth B. E., et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35: 1381–1395. Available: http://ovidsp.tx.ovid.com.proxy1.cl.msu.edu/spb/ovidweb.cgi?WebLinkFrameset=1&S=DPLMFPFGELDDHFEINCFLMBMJBPHHAA00&returnUrl=http%3A%2F%2Fovidsp.tx.ovid.com%2Fspb%2Fovidweb.cgi%3F%26TOC%3DS.sh.15.16.21.42%257c20%257c50%26FORMAT%3Dtoc%26FIELDS%3DTOC%26S%3DDP doi: 10.1249/01.MSS.0000078924.61453.FB 12900694
35. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43: 1334–1359. doi: 10.1249/MSS.0b013e318213fefb 21694556
36. Mang CS, McEwen LM, MacIsaac JL, Snow NJ, Campbell KL, Kobor MS, et al. Exploring genetic influences underlying acute aerobic exercise effects on motor learning. Sci Rep. 2017;7: 12123. doi: 10.1038/s41598-017-12422-3 28935933
37. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment and Health. 1990. pp. 55–58. doi: 10.5271/sjweh.1815 2345867
38. Turco CV, El-Sayes J, Locke MB, Chen R, Baker S, Nelson AJ. Effects of lorazepam and baclofen on short- and long-latency afferent inhibition. J Physiol. 2018;596. doi: 10.1113/JP276710 30192388
39. Abdoli-Eramaki M, Damecour C, Christenson J, Stevenson J. The effect of perspiration on the sEMG amplitude and power spectrum. J Electromyogr Kinesiol. 2012;22: 908–913. doi: 10.1016/j.jelekin.2012.04.009 22613823
40. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. Journals Gerontol—Ser A Biol Sci Med Sci. 2006;61: 1166–1170. doi: 10.1093/gerona/61.11.1166 17167157
41. Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35: S20–28. doi: 10.1016/j.neurobiolaging.2014.03.034 24952993
42. Sexton CE, Betts JF, Demnitz N, Dawes H, Ebmeier KP, Johansen-Berg H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage. 2016;131: 81–90. doi: 10.1016/j.neuroimage.2015.09.071 26477656
43. Chapman SB, Aslan S, Spence JS, DeFina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5: 75. doi: 10.3389/fnagi.2013.00075 24282403
44. Thomas BP, Yezhuvath US, Tseng BY, Liu P, Levine BD, Zhang R, et al. Life-long aerobic exercise preserved baseline cerebral blood flow but reduced vascular reactivity to CO2. J Magn Reson Imaging. 2013;38: 1177–1183. doi: 10.1002/jmri.24090 23526811
45. Zimmerman B, Sutton BP, Low KA, Fletcher MA, Tan CH, Schneider-Garces N, et al. Cardiorespiratory fitness mediates the effects of aging on cerebral blood flow. Front Aging Neurosci. 2014;6: 59. doi: 10.3389/fnagi.2014.00059 24778617
46. Petriz BA, Gomes CPC, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, et al. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome. J Cell Physiol. 2017;232: 257–269. doi: 10.1002/jcp.25477 27381298
47. Ardawi MSM, Rouzi AA, Qari MH. Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: A cross-sectional and a longitudinal study. J Clin Endocrinol Metab. 2012;97: 3691–3699. doi: 10.1210/jc.2011-3361 22865898
48. Ozyemisci-Taskiran O, Gunendi Z, Bolukbasi N, Beyazova M. The effect of a single session submaximal aerobic exercise on premotor fraction of reaction time: An electromyographic study. Clin Biomech. 2008;23: 231–235. doi: 10.1016/j.clinbiomech.2007.08.027 17961893
49. Nanda B, Balde J, Manjunatha S. The acute effects of a single bout of moderate-intensity aerobic exercise on cognitive functions in healthy adult males. J Clin Diagnostic Res. 2013;7: 1883–1885. doi: 10.7860/JCDR/2013/5855.3341 24179888
50. Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS One. 2016;11: e0150039. doi: 10.1371/journal.pone.0150039 26901664
51. Mang CS, Snow NJ, Wadden KP, Campbell KL, Boyd LA. High-Intensity Aerobic Exercise Enhances Motor Memory Retrieval. Med Sci Sports Exerc. 2016;48: 2477–2486. doi: 10.1249/MSS.0000000000001040 27414689
52. Nicolini C, Toepp S, Harasym D, Michalski B, Fahnestock M, Gibala M, et al. No changes in corticospinal excitability, biochemical markers and working memory after six weeks of high-intensity interval training in sedentary males. Physiol Rep. 2019;7: e14140. doi: 10.14814/phy2.14140 31175708
53. Stoykov ME, Madhavan S. Motor priming in neurorehabilitation. J Neurol Phys Ther. 2015;39: 33–42. doi: 10.1097/NPT.0000000000000065 25415551
54. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112: 257–269. doi: 10.1016/s0092-8674(03)00035-7 12553913
55. Kleim JA, Chan S, Pringle E, Schallert K, Procaccio V, Jimenez R, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9: 735–737. doi: 10.1038/nn1699 16680163
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Kde se vzal COVID-19: Mohou za pandemii nakažená zvířata, nebo únik viru z laboratoře?
- Jak se liší věk jednotlivých orgánů v našem těle?
- „Jednohubky“ z klinického výzkumu – 2025/1
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy