Risk perception and behavioral change during epidemics: Comparing models of individual and collective learning
Autoři:
Shaheen A. Abdulkareem aff001; Ellen-Wien Augustijn aff003; Tatiana Filatova aff001; Katarzyna Musial aff005; Yaseen T. Mustafa aff006
Působiště autorů:
Center of Studies of Technology and Sustainability Development (CSTM), Faculty of Behavioral, Management, and Social sciences (BMS), University of Twente, Enschede, The Netherlands
aff001; Department of Computer Science, College of Science, University of Duhok (UoD), Kurdistan region, Iraq
aff002; Department of Geo-Information Processing (GIP), Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
aff003; School of Information, Systems and Modeling, Faculty of Engineering and Information Technology, University of Technology Sydney (UTS), Sydney, Australia
aff004; Advanced Analytics Institute, School of Software, Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
aff005; Faculty of Science, University of Zakho (UoZ), Kurdistan region, Iraq
aff006
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226483
Souhrn
Modern societies are exposed to a myriad of risks ranging from disease to natural hazards and technological disruptions. Exploring how the awareness of risk spreads and how it triggers a diffusion of coping strategies is prominent in the research agenda of various domains. It requires a deep understanding of how individuals perceive risks and communicate about the effectiveness of protective measures, highlighting learning and social interaction as the core mechanisms driving such processes. Methodological approaches that range from purely physics-based diffusion models to data-driven environmental methods rely on agent-based modeling to accommodate context-dependent learning and social interactions in a diffusion process. Mixing agent-based modeling with data-driven machine learning has become popularity. However, little attention has been paid to the role of intelligent learning in risk appraisal and protective decisions, whether used in an individual or a collective process. The differences between collective learning and individual learning have not been sufficiently explored in diffusion modeling in general and in agent-based models of socio-environmental systems in particular. To address this research gap, we explored the implications of intelligent learning on the gradient from individual to collective learning, using an agent-based model enhanced by machine learning. Our simulation experiments showed that individual intelligent judgement about risks and the selection of coping strategies by groups with majority votes were outperformed by leader-based groups and even individuals deciding alone. Social interactions appeared essential for both individual learning and group learning. The choice of how to represent social learning in an agent-based model could be driven by existing cultural and social norms prevalent in a modeled society.
Klíčová slova:
Agent-based modeling – Behavior – Decision making – Human learning – Cholera – Infectious disease epidemiology – Learning – Surface water
Zdroje
1. WOH WHO. Managing Epidemics: Key Facts About Major Deadly Diseases. World Heal Organ. 2018.
2. Ruland BEC, Dinca I, Curtis V, Barry MM, Ekdahl K, Timen A. Learning from each other: where health promotion meets infectious diseases. Eurohealth Int Eurohealth Inc Euro Obs. 2015;21: 13–17.
3. Zhao S, Wu J, Ben-Arieh D. Modeling infection spread and behavioral change using spatial games. Heal Syst. 2015;4: 41–53. doi: 10.1057/hs.2014.22
4. Tan X, Li S, Wang C, Chen X, Wu X. Severe Acute Respiratory Syndrome epidemic and change of people’s health behavior in China. Health Educ Res. 2004;19: 576–580. doi: 10.1093/her/cyg074 15150138
5. Williams L, Collins AE, Bauaze A, Edgeworth R. The role of risk perception in reducing cholera vulnerability. Risk Manag. 2010;12: 163–184. doi: 10.1057/rm.2010.1
6. Perra N, Balcan D, Gonçalves B, Vespignani A. Towards a Characterization of Behavior-Disease Models. PLoS One. 2011;6: 23084. doi: 10.1371/journal.pone.0023084 21826228
7. Granell C, Gómez S, Arenas A. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks. Phys Rev Lett. 2013;111: 128701. doi: 10.1103/PhysRevLett.111.128701 24093306
8. Massaro E, Bagnoli F. Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method. Phys Rev E—Stat Nonlinear, Soft Matter Phys. 2014;90: 53–64. doi: 10.1103/PhysRevE.90.052817 25493844
9. Salehi M, Sharma R, Marzolla M, Magnani M, Siyari P, Montesi D. Spreading Processes in Multilayer Networks. IEEE Trans Netw Sci Eng. 2015;2: 65–83. doi: 10.1109/TNSE.2015.2425961
10. Bródka P, Musial K, Jankowski J. Interacting spreading processes in multilayer networks. 2019.
11. Van Kerkhove MD, Ferguson NM. Epidemic and intervention modelling–a scientific rationale for policy decisions? Lessons from the 2009 influenza pandemic. Bull World Health Organ. 2012;90: 306–310. doi: 10.2471/BLT.11.097949 22511828
12. Christley RM, Mort M, Wynne B, Wastling JM, Heathwaite AL, Pickup R, et al. “Wrong, but Useful”: Negotiating Uncertainty in Infectious Disease Modelling. Speybroeck N, editor. PLoS One. 2013;8: e76277. doi: 10.1371/journal.pone.0076277 24146851
13. Boulanger P-M, Bréchet T. Models for policy-making in sustainable development: The state of the art and perspectives for research. Ecol Econ. 2005;55: 337–350. doi: 10.1016/j.ecolecon.2005.07.033
14. Venkatramanan S, Lewis B, Chen J, Higdon D, Vullikanti A, Marathe M. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics. 1 Feb 2018: 43–49. doi: 10.1016/j.epidem.2017.02.010 28256420
15. Pizzitutti F, Pan W, Feingold B, Zaitchik B, Álvarez CA, Mena CF. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission. Kumar S, editor. PLoS One. 2018;13: e0193493. doi: 10.1371/journal.pone.0193493 29509795
16. Tang X, Zhao S, Chiu APY, Ma H, Xie X, Mei S, et al. Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. Jin Z, editor. PLoS One. 2017;12: e0177514. doi: 10.1371/journal.pone.0177514 28542182
17. Hunter E, Mac Namee B, Kelleher JD. A taxonomy for agent-based models in human infectious disease epidemiology. J Artif Soc Soc Simul. 2017;20: 2. doi: 10.18564/jasss.3414
18. Hunter E, Mac Namee B, Kelleher J. An open-data-driven agent-based model to simulate infectious disease outbreaks. Khudyakov YE, editor. PLoS One. 2018;13: e0208775. doi: 10.1371/journal.pone.0208775 30566424
19. An L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol Modell. 2012;229: 25–36. doi: 10.1016/j.ecolmodel.2011.07.010
20. Filatova T, Verburg PH, Parker DC, Stannard CA. Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ Model Softw. 2013;45: 1–7. doi: 10.1016/j.envsoft.2013.03.017
21. de Marchi S, Page SE. Agent-Based Models. Annu Rev Polit Sci. 2014;17: 1–20. doi: 10.1146/annurev-polisci-080812-191558
22. Fonoberova M, Fonoberov VA, Mezić I. Global sensitivity/uncertainty analysis for agent-based models. Reliab Eng Syst Saf. 2013;118: 8–17. doi: 10.1016/j.ress.2013.04.004
23. Abdulkareem SA, Augustijn E-W, Mustafa YT, Filatova T. Intelligent judgements over health risks in a spatial agent-based model. Int J Health Geogr. 2018;17: 8. doi: 10.1186/s12942-018-0128-x 29558944
24. Ghazi S, Dugdale J, Khadir T, Dugdale J. A multi-agent based approach for simulating the impact of human behaviours on air pollution. Inform. 2018;42: 199–209.
25. Brandon N, Dionisio KL, Isaacs K, Tornero-Velez R, Kapraun D, Setzer RW, et al. Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence. J Expo Sci Environ Epidemiol. 2018; 1. doi: 10.1038/s41370-018-0052-y 30242268
26. Djennas M, Benbouziane M, Djennas M. Agent-Based Modeling in Supply Chain Management: a Genetic Algorithm and Fuzzy Logic Approach. Int J Artif Intell Appl. 2012;3: 13–30.
27. Carlson SM, White RE, Davis-Unger AC. Evidence for a relation between executive function and pretense representation in preschool children. Cogn Dev. 2014;29: 1–16. doi: 10.1016/j.cogdev.2013.09.001 24357896
28. Tang L, Liu H. Scalable learning of collective behavior based on sparse social dimensions. Proceeding of the 18th ACM conference on Information and knowledge management—CIKM ‘09. New York, New York, USA: ACM Press; 2009. p. 1107.
29. Ndeffo Mbah ML, Liu J, Bauch CT, Tekel YI, Medlock J, Meyers LA, et al. The impact of imitation on vaccination behavior in social contact networks. Pascual M, editor. PLoS Comput Biol. 2012;8: e1002469. doi: 10.1371/journal.pcbi.1002469 22511859
30. Li B, Sun D, Guo S, Lin Z. Agent Based Simulation of Group Emotions Evolution and Strategy Intervention in Extreme Events. Discret Dyn Nat Soc. 2014;2014: 1–17. doi: 10.1155/2014/464190
31. Bosse T, Hoogendoorn M, Klein MCA, Treur J, van der Wal CN, van Wissen A. Modelling collective decision making in groups and crowds: Integrating social contagion and interacting emotions, beliefs and intentions. Auton Agent Multi Agent Syst. 2013;27: 52–84. doi: 10.1007/s10458-012-9201-1
32. Sen S, Weiss G. Learning in multi-agent systems. In: Weiss G, editor. Multiagent Systems. MIT Press; 1999. pp. 259–298.
33. Eberlen J, Scholz G, Gagliolo M. Simulate this! An Introduction to Agent-Based Models and their Power to Improve your Research Practice. Int Rev Soc Psychol. 2017;30: 149. doi: 10.5334/irsp.115
34. Collins A, Elzie T, Frydenlund E, Robinson RM. Do groups matter? an agent-based modeling approach to pedestrian egress. Transp Res Procedia. 2014;2: 430–435. doi: 10.1016/j.trpro.2014.09.051
35. Augustijn EW, Doldersum T, Useya J, Augustijn D. Agent-based modelling of cholera. Stoch Environ Res Risk Assess. 2016;30: 2079–2095. doi: 10.1007/s00477-015-1199-x
36. Abdulkareem SA, Mustafa YT, Augustijn E-W, Filatova T. Bayesian networks for spatial learning: a workflow on using limited survey data for intelligent learning in spatial agent-based models. Geoinformatica. 2019;23: 243–268. doi: 10.1007/s10707-019-00347-0
37. Ali M, Lopez AL, You YA, Kim YE, Sah B, Maskery B, et al. The global burden of cholera. Bull World Health Organ. 2012;90: 209–218. doi: 10.2471/BLT.11.093427 22461716
38. Rajendran S, Shenbagaraman VM. A Comprehensive Review of the Applications of Protection Motivation Theory in Health Related Behaviors. J Chem Pharm Sci. 2017;10: 622–625.
39. Aron JL, Schwartz IB. Seasonality and period-doubling bifurcations in an epidemic model. J Theor Biol. 1984;110: 665–679. doi: 10.1016/s0022-5193(84)80150-2 6521486
40. Melegaro A, Del Fava E, Poletti P, Merler S, Nyamukapa C, Williams J, et al. Social Contact Structures and Time Use Patterns in the Manicaland Province of Zimbabwe. Nishiura H, editor. PLoS One. 2017;12: e0170459. doi: 10.1371/journal.pone.0170459 28099479
41. Rogers RW. Cognitive and Physiological Processes in Fear Appeals and Attitute Change: A Revised Theory of Porotection Motivation. Social Psychophysiology: A Sourcebook. 1983. pp. 153–177.
42. Russell SJ, Norvig P. Artificial Intelligence: A Modern Approach. Third Edit. Pearson Education, Inc., Upper Saddle River. Pearson; 3 edition (December 11, 2009); 2010.
43. Abdulkareem SA, Augustijn E-W, Mustafa YT, Filatova T. Integrating Spatial Intelligence for risk perception in an Agent Based Disease Model. GeoComputation. 2017; 1–7.
44. Massaro E, Ganin A, Perra N, Linkov I, Vespignani A. Resilience management during large-scale epidemic outbreaks. Sci Rep. 2018;8: 1859. doi: 10.1038/s41598-018-19706-2 29382870
45. Harris JB, LaRocque RC, Chowdhury F, Khan AI, Logvinenko T, Faruque ASG, et al. Susceptibility to Vibrio cholerae infection in a cohort of household contacts of patients with cholera in Bangladesh. Ko AI, editor. PLoS Negl Trop Dis. 2008;2: e221. doi: 10.1371/journal.pntd.0000221 18398491
46. Zacharias GL, MacMillan J, Van Hemel SB. Behavioral Modeling and Simulation: From Individuals to Societies. National Academies Press. National Research Council; 2008. https://doi.org/10.17226/12169
47. Zhao S, Kuang Y, Wu C-HC-H, Bi K, Ben-Arieh D. Risk perception and human behaviors in epidemics. IISE Trans Healthc Syst Eng. 2018;0: 1–14. doi: 10.1080/24725579.2018.1464085
48. Brown VJ. Risk perception it’s personal. Environmental Health Perspectives. National Institute of Environmental Health Science; 2014. pp. A276–A279. doi: 10.1289/ehp.122-A276 25272337
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy