#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Post-transcriptional regulation of Rad51c by miR-222 contributes cellular transformation


Autoři: Emilio Rojas aff001;  Monica Martinez-Pacheco aff002;  Maria Alexandra Rodriguez-Sastre aff001;  Paulina Ramos-Espinosa aff001;  Mahara Valverde aff001
Působiště autorů: Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Mexico City, C.U., México aff001;  Center for Genomic Sciences, UNAM, Cuernavaca, Mexico aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221681

Souhrn

DNA repair inhibition has been described as an essential event leading to the initiation of carcinogenesis. In a previous study, we observed that the exposure to metal mixture induces changes in the miR-nome of the cells that was correlated with the sub-expression of mRNA involved in processes and diseases associated with metal exposure. From this analysis, one of the miRNAs that shows changes in its expression is miR-222, which is overexpressed in various cancers associated with exposure to metals. In silico studies showed that a possible target for the microRNA-222 could be Rad 51c, a gene involved in the double-stranded DNA repair. We could appreciate that up-regulation of miR-222 reduces the expression both gene and as a protein expression of Rad51c by RT-PCR and immunoblot, respectively. A luciferase assay was performed to validate Rad51c as miR-222 target. Neutral comet assay was performed in order to evaluate DNA double-strand breaks under experimental conditions. Here, we demonstrate that miR-222 up-regulation, directly regulates Rad51c expression negatively, and impairs homologous recombination of double-strand break DNA repair during the initiation stage of cell transformation. This inhibition triggers morphological transformation in a two-stage Balb/c 3T3 cell assay, suggesting that this small RNA acts as an initiator of the carcinogenesis process.

Klíčová slova:

DNA damage – DNA repair – Gene expression – MicroRNAs – NIH 3T3 cells – Precursor cells – Protein expression – Transfection


Zdroje

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013 21376230

2. Vogelstein B., Papadopoulos N., Velculescu V.E., Zhou S., Diaz L.A., Kinzler K.W., et al. Cancer genome landscapes. Science (New York, N.Y.). 2013; 339: 1546–58.

3. Goodson WH 3rd, Lowe L, Carpenter DO, Gilbertson M, Manaf Ali A, Lopez de Cerain Salsamendi A, et al. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead. Carcinogenesis. 2015; Jun;36 Suppl 1: S254–96

4. Nowell P.C. (1976). The clonal evolution of tumor cell populations. Science (New York, N.Y.).1976;194: 23–8.

5. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411(6835):366–374. doi: 10.1038/35077232 11357144

6. Alsop K., Fereday S., Meldrum C., deFazio A., Emmanuel C., George J., et al. BRCA Mutation Frequency and Patterns of Treatment Response in BRCA Mutation–Positive Women With Ovarian Cancer: A Report From the Australian Ovarian Cancer Study Group. Journal Of Clinical Oncology. 2012; 30: 2654–2663. doi: 10.1200/JCO.2011.39.8545 22711857

7. Negrini S., Gorgoulis V.G. & Halazonetis T.D. Genomic instability—an evolving hallmark of cancer. Nature Reviews. Molecular Cell Biology.2010; 11: 220–8. doi: 10.1038/nrm2858 20177397

8. Bailey K.A. & Fry R.C. Environmental Toxicants and Perturbation of miRNA Signaling. In MicroRNAs In Toxicology And Medicine. John Wiley & Sons, Ltd, Chichester, UK; 2013. pp. 5–31.

9. Elamin BK, Callegari E, Gramantieri L, Sabbioni S, Negrini M. MicroRNA response to environmental mutagens in liver. Mutation Res 2011; 717: 67–76. doi: 10.1016/j.mrfmmm.2011.03.015 21514310

10. Ambros V, The functions of animal microRNAs. Nature 2004; 431: 350–355 doi: 10.1038/nature02871 15372042

11. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433:769–773 doi: 10.1038/nature03315 15685193

12. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120:15–20. doi: 10.1016/j.cell.2004.12.035 15652477

13. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes, Cell 2006;126:1203–1217. doi: 10.1016/j.cell.2006.07.031 16990141

14. Calin GA, Croce CM. MicroRNA signatures in human cancers, Nat. Rev. Cancer 2006; 6:857–866 doi: 10.1038/nrc1997 17060945

15. Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy, J. Cell Sci. 2007; 120:1833–1840. doi: 10.1242/jcs.03450 17515481

16. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles, Cell 2009;136:26–36. doi: 10.1016/j.cell.2008.12.027 19135886

17. Cho WC. MicroRNAs in cancer–from research to therapy, Biochim. Biophys. Acta 2010; 1805:209–217.

18. Cho WC: MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy, Int. J. Biochem. Cell Biol. 2010; 42:1273–1281. doi: 10.1016/j.biocel.2009.12.014 20026422

19. Wouters M.D., Gent D.C. van Hoeijmakers J.H.J. & Pothof J. MicroRNAs, the DNA damage response and cancer. Mutation Research—Fundamental And Molecular Mechanisms Of Mutagenesis.2011;717: 54–66. doi: 10.1016/j.mrfmmm.2011.03.012 21477600

20. Tessitore A., Cicciarelli G., Del Vecchio F., Gaggiano A., Verzella D., Fischietti M., et al. MicroRNAs in the DNA Damage/Repair Network and Cancer. International Journal Of Genomics, 2014. 820248. doi: 10.1155/2014/820248 24616890

21. Natarajan V. Regulation of DNA repair by non-coding miRNAs. Non-coding RNA Research. 2016;1(1): 64–68. doi: 10.1016/j.ncrna.2016.10.002 30159412

22. Hu H, Gatti RA. MicroRNAs: new players in the DNA damage response. Journal of molecular cell biology 2011;3(3):151–158. doi: 10.1093/jmcb/mjq042 21183529

23. Hegre SA, Saetrom P, Aas PA, Pettersen HS, Otterlei M, Krokan HE. Multiple microRNAs may regulate the DNA repair enzyme uracil-DNA glycosylase. DNA repair 2013;12(1):80–86. doi: 10.1016/j.dnarep.2012.10.007 23228472

24. Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer research 2009;69(3):1221–1229. doi: 10.1158/0008-5472.CAN-08-2516 19141645

25. Xie QH, He XX, Chang Y et al. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochemical and biophysical research communications 2011;410(3):440–445. doi: 10.1016/j.bbrc.2011.05.153 21672525

26. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proceedings of the National Academy of Sciences of the United States of America 2010;107(49):21098–21103. doi: 10.1073/pnas.1015541107 21078976

27. Zhong Z, Dong Z, Yang L, Chen X, Gong Z. MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34(3):1959–1965.

28. Valeri N, Gasparini P, Fabbri M, Braconi C, Veronese A, Lovat F, et al. Modulation of mismatch repair and genomic stability by miR-155. Proceedings of the National Academy of Sciences of the United States of America 2010;107(15):6982–6987. doi: 10.1073/pnas.1002472107 20351277

29. Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proceedings of the National Academy of Sciences of the United States of America 2014;111(12):4536–4541. doi: 10.1073/pnas.1402604111 24616504

30. Huang JW, Wang Y, Dhillon KK, Calses P, Villegas E, Mitchell PS, et al. Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Molecular cancer research: MCR 2013;11(12):1564–1573. doi: 10.1158/1541-7786.MCR-13-0292 24088786

31. Wang Y, Huang JW, Calses P, Kemp CJ, Taniguchi T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer research 2012;72(16):4037–4046. doi: 10.1158/0008-5472.CAN-12-0103 22761336

32. Song L, Dai T, Xie Y, Wang C, Lin C, Wu Z, et al. Up-regulation of miR-1245 by c-myc targets BRCA2 and impairs DNA repair. Journal of molecular cell biology 2012;4(2):108–117. doi: 10.1093/jmcb/mjr046 22158906

33. Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. Journal of the National Cancer Institute 2013;105(22):1750–1758. doi: 10.1093/jnci/djt302 24168967

34. Xu K, Chen Z, Qin C, Song X. miR-7 inhibits colorectal cancer cell proliferation and induces apoptosis by targeting XRCC2. OncoTargets and therapy 2014; 7:325–332. doi: 10.2147/OTT.S59364 24570594

35. Cerbinskaite A, Mukhopadhyay A, Plummer ER, Curtin NJ, Edmondson RJ. Defective homologous recombination in human cancers. Cancer treatment reviews 2012;38(2):89–100. doi: 10.1016/j.ctrv.2011.04.015 21715099

36. Lu W, Wang X, Lin H, Lindor NM, Couch FJ. Mutation screening of RAD51C in high-risk breast and ovarian cancer families. Familial cancer 2012;11(3):381–385. doi: 10.1007/s10689-012-9523-9 22476429

37. Pelttari LM, Nurminen R, Gylfe A, Aaltonen LA, Schleutker J, Nevanlinna H. Screening of Finnish RAD51C founder mutations in prostate and colorectal cancer patients. BMC cancer 2012; 12:552. doi: 10.1186/1471-2407-12-552 23176254

38. Scheckenbach K, Baldus SE, Balz V, Freund M, Pakropa P, Sproll C, et al. RAD51C—a new human cancer susceptibility gene for sporadic squamous cell carcinoma of the head and neck (HNSCC). Oral oncology 2014;50(3):196–199. doi: 10.1016/j.oraloncology.2013.11.007 24315737

39. Martinez-Pacheco M, Hidalgo-Miranda A, Romero-Cordoba S, Valverde M, Rojas E. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects. Gene 2014;533(2):508–514. doi: 10.1016/j.gene.2013.09.049 24080485

40. Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, et al. miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America 2010;107(1):264–269. doi: 10.1073/pnas.0907904107 20018759

41. Manikandan J, Aarthi JJ, Kumar SD, Pushparaj PN. Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation 2008;2(8):330–334. doi: 10.6026/97320630002330 18685719

42. Dias F, Teixeira AL, Santos JI, Gomes N, Nogueira A, Assis J, et al. Renal cell carcinoma development and miRNAs: a possible link to the EGFR pathway. Pharmacogenomics 2013;14(14):1793–1803. doi: 10.2217/pgs.13.184 24192126

43. Puerta-Gil P, Garcia-Baquero R, Jia AY, Ocaña S, Alvarez-Mugica M, Alvarez-Ossorio JL, et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. The American journal of pathology 2012;180(5):1808–1815. doi: 10.1016/j.ajpath.2012.01.034 22426337

44. ATSDR. Interaction Profile for: Arsenic, Cadmium, Chromium and Lead. U.S. Deparment of Health and Human Services Public Health Service. Agency for Toxic Substances and Disease Registry 160. 2004.

45. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk—database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. Journal of biomedical informatics 2011;44(5):839–847. doi: 10.1016/j.jbi.2011.05.002 21605702

46. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome biology 2010;11(8): R90. doi: 10.1186/gb-2010-11-8-r90 20799968

47. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 2011;39(Database issue): D152–157. doi: 10.1093/nar/gkq1027 21037258

48. Martin SA, Emilio R, Mahara V. Role of oxidative stress in transformation induced by metal mixture. Oxidative medicine and cellular longevity 2011; 2011:935160. doi: 10.1155/2011/935160 22191014

49. Group INEW. Cellular and Molecular Mechanisms of Cell Transformation and Standardization of Transformation Assays of Established Cell Lines for the Prediction of. Carcinogenic Chemicals: Overview and Recommended Protocols. Cancer research 1985; 45:2395–2399.

50. Hernandez-Franco P, Silva M, Valverde M, Rojas E. Induction of oxidative stress by low doses of lead in human hepatic cell line WRL-68. Biometals: an international journal on the role of metal ions in biology, biochemistry, and medicine 2011;24(5):951–958

51. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25(4):402–408. doi: 10.1006/meth.2001.1262 11846609

52. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America 1979;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350 388439

53. Rojas E, Lopez MC, Valverde M. Single cell gel electrophoresis assay: methodology and applications. Journal of chromatography B, Biomedical sciences and applications 1999:722(1–2):225–254. doi: 10.1016/s0378-4347(98)00313-2 10068143

54. Olive PL. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. International journal of radiation biology 1999;75(4):395–405. doi: 10.1080/095530099140311 10331844

55. Yu F, Pillman KA, Nielsen CT, Toubia J, Lawrence DM, Tsykin A, et al. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acid Res.2017: 19: 11371–11385.

56. Nejad C, Oillman KA, Siddle KJ, Pepin G, Anko ML, McCoy CE, et al. miR-222 isomirs are differentially regulated by tipe-1 interferon. RNA 2017; 45: 11371–11385

57. West SC. Molecular views of recombination proteins and their control. Nat. Rev.Mol.Cell Biol. (2003) 4: 435–445. doi: 10.1038/nrm1127 12778123

58. Rodriguez-Sastre MA, Rojas E, Valverde M. Assessing the impact of As-Cd-Pb metal mixture on cell transformation by two-stage Balb/c 3T3 cell assay. Mutagenesis 2014;29(4):251–257. doi: 10.1093/mutage/geu013 24782466

59. Tsuchiya T, and Umeda M. Relationship between exposure to TPA and appearance of transformed cells in MNNG-initiated ransformation of BALC/c 3T3 cells. Int J Cancer 1997;73:271–276. doi: 10.1002/(sici)1097-0215(19971009)73:2<271::aid-ijc18>3.0.co;2-i 9335454


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#