Molecular karyotyping of Siberian wild rye (Elymus sibiricus L.) with oligonucleotide fluorescence in situ hybridization (FISH) probes
Autoři:
Jihong Xie aff001; Yan Zhao aff002; Linqing Yu aff001; Ruijuan Liu aff003; Quanwen Dou aff003
Působiště autorů:
Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot, China
aff001; College of Grassland, Resource and Environmental Science, Inner Mongolia Agricultural University, Hohhot, China
aff002; Key Laboratory of Crop Molecular Breeding, Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
aff003; Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, China
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227208
Souhrn
Siberian wild rye (Elymus sibiricus L.), an allotetraploid species, is a potentially high-quality perennial forage crop native to temperate regions. We used fluorescently conjugated oligonucleotides, representing ten repetitive sequences, including 6 microsatellite repeats, two satellite repeats, and two ribosomal DNAs, to characterize E. sibiricus chromosomes, using sequential fluorescence in situ hybridization and genomic in situ hybridization assays. Our results showed that microsatellite repeats (AAG)10 or (AGG)10, satellite repeats pAs1 and pSc119.2, and ribosomal 5S rDNA and 45S rDNA are specific markers for unique chromosomes. A referable karyotype ideogram was suggested, by further polymorphism screening, across different E. sibiricus cultivars with a probe mixture of (AAG)10, Oligo-pAs1, and Oligo-pSc119.2. Chromosomal polymorphisms vary between different genomes and between different individual chromosomes. In particular, two distinct forms of chromosome E in H genome were identified in intra- and inter-populations. Here, the significance of these results, for E. sibiricus genome research and breeding, and novel approaches to improve fluorescence in situ hybridization-based karyotyping are discussed.
Klíčová slova:
Fluorescent in situ hybridization – Genome complexity – Chromosome pairs – Karyotypes – Oligonucleotides – Population genetics – Karyotyping – DNA probes
Zdroje
1. Baum BR, Edwards T, Ponomareva E, Johnson DA. Are the Great Plains wildrye (Elymus canadensis) and the Siberian wildrye (Elymus sibiricus) conspecific? A study based on the nuclear 5S rDNA sequences. Botany-Botanique. 2012;90(6): 407–21. doi: 10.1139/b2012-013
2. Klebesadel LJ. Siberian Wildrye (Elymus sibiricus L.): Agronomic characteristics of a potentially valuable forage and conservation grass for the north. Agron J. 1969;61(6): 855–859. doi: 10.2134/agronj1969.00021962006100060008x
3. Mao P, Han J, Wu X. Effects of harvest time on seed yield of Siberian wildrye. Acta Agrestia Sinica. 2003;11: 33–37.
4. Lei YT, Zhao YY, Yu F, Li Y, Dou QW. Development and characterization of 53 polymorphic genomic-SSR markers in Siberian wildrye (Elymus sibiricus L.). Conserv Genet Resour. 2014;6(4): 861–864. doi: 10.1007/s12686-014-0225-5
5. Zhou Q, Luo D, Ma L, Xie W, Wang Y, Wang Y, et al. Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Sci Rep. 2016;6: 20549. doi: 10.1038/srep20549 26853106; PubMed Central PMCID: PMC4744933.
6. Ma X, Chen SY, Zhang XQ, Bai SQ, Zhang CB. Assessment of worldwide genetic diversity of Siberian Wild Rye (Elymus sibiricus L.) germplasm based on gliadin analysis. Molecules. 2012;17(4): 4424–4434. doi: 10.3390/molecules17044424 22499189; PubMed Central PMCID: PMC6268020.
7. Xie W, Zhang J, Zhao X, Zhang Z, Wang Y. Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biol. 2017;17(1): 78. doi: 10.1186/s12870-017-1026-2 28431567; PubMed Central PMCID: PMC5399857.
8. Xie WG, Zhao XH, Zhang JQ, Wang YR, Liu WX. Assessment of genetic diversity of Siberian wild rye (Elymus sibiricus L.) germplasms with variation of seed shattering and implication for future genetic improvement. Biochem Syst Ecol. 2015;58: 211–218. doi: 10.1016/j.bse.2014.12.006
9. Zhao X, Zhang J, Zhang Z, Wang Y, Xie W. Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers. Hereditas. 2017;154(1): 15. doi: 10.1186/s41065-017-0053-1 29255380; PubMed Central PMCID: PMC5727920.
10. Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet. 2014;127(3): 715–730. doi: 10.1007/s00122-013-2253-z 24408375
11. Said M, Hřibová E, Danilova TV, Karafiátová M, Čížková J, Friebe B, e tal. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet. 2018;131: 2213–2227. doi: 10.1007/s00122-018-3148-9 30069594
12. Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J. Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome. 2019;12:180096. doi: 10.3835/plantgenome2018.12.0096 31290923
13. Dewey DR. The genomic system of classification as a guide to intergeneric hybridization in the perennial Triticeae. Stadler Gen. 1984;35(1): 202. doi: 10.2307/1221077
14. Dou QW, Zhang TL, Tsujimoto H. Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J Syst Evol. 2011;49(4): 347–352. doi: 10.1111/j.1759-6831.2011.00138.x
15. Cuadrado A, Carmona A, Jouve N. Chromosomal characterization of the three subgenomes in the polyploids of Hordeum murinum L.: New insight into the evolution of this complex. PLoS ONE. 2013;8(12). doi: 10.1371/journal.pone.0081385 24349062; PubMed Central PMCID: PMC3862567.
16. Dou Q, Liu R, Yu F. Chromosomal organization of repetitive DNAs in Hordeum bogdanii and H. brevisubulatum (Poaceae). Comp Cytogenet. 2016;10(4): 465–81. doi: 10.3897/CompCytogen.v10i4.9666 28123672; PubMed Central PMCID: PMC5240503.
17. Danilova TV, Friebe B, Gill BS. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121(6): 597–611. doi: 10.1007/s00412-012-0384-7 23052335.
18. Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet. 2014;55(3): 313–8. doi: 10.1007/s13353-014-0215-z 24782110.
19. Rayburn AL, Gill BS. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep. 1986;4(2): 102–109. doi: 10.1007/BF02732107
20. Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2): 545–560. doi: 10.1016/0092-8674(80)90529-2 6244112
21. Kato A. Air drying method using nitrous oxide for chromosome counting in maize. Biotech Histochem. 1999;74(3): 160–166. doi: 10.3109/10520299909047968 10416789
22. Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. 2013. FISHIS: Fluorescence In situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE 8: e57994. doi: 10.1371/journal.pone.0057994 23469124
23. Ma X, Zhang XQ, Zhou YH, Bai SQ, Liu W. Assessing genetic diversity of Elymus sibiricus (Poaceae: Triticeae) populations from Qinghai-Tibet Plateau by ISSR markers. Biochem System Ecol. 2008;36(7): 514–22. doi: 10.1016/j.bse.2008.03.003
24. Yan JJ, Bai SQ, Zhang XQ, You MH, Zhang CB, Li DX, et al. Genetic diversity of wild Elymus sibiricus L. germplasm from Qinghai-Tibetan Plateau in China detected by SSR markers (In Chinese with English abstract). Acta Prataculturae Sinica. 2010;19(1): 173–183. doi: 10.3724/SP.J.1142.2010.40491
25. Zhang J, Xie W, Wang Y, Zhao X. Potential of start codon targeted (SCoT) markers to estimate genetic diversity and relationships among Chinese Elymus sibiricus accessions. Molecules. 2015;20(4): 5987–6001. doi: 10.3390/molecules20045987 25853316; PubMed Central PMCID: PMC6272172.
26. Badaeva ED, Badaev NS, Gill BS, Filatenko AA. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant System Evol. 1994;192(1/2): 117–145. doi: 10.1007/bf00985912
27. Badaeva ED, Jiang J, Gill BS. Detection of intergenomic translocations with centromeric and noncentromeric breakpoints in Triticum araraticum: mechanism of origin and adaptive significance. Genome, 1995;38(5): 976–981. doi: 10.1139/g95-128 18470221
28. Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. P Nat Acad Sci USA. 2004;101(37): 13554–9. doi: 10.1073/pnas.0403659101 15342909; PubMed Central PMCID: PMC518793.
29. Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, et al. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J. 2009;59(5): 712–22. doi: 10.1111/j.1365-313X.2009.03911.x 19453446.
30. Jiang J. Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosome Res. 2019; doi: 10.1007/s10577-019-09607-z 30852707
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy