Research on motion planning for an indoor spray arm based on an improved potential field method
Autoři:
Dongjie Zhao aff001; Bin Zhang aff002; Ying Zhao aff001; Qun Sun aff001; Chuanjun Li aff002; Chong Wang aff001
Působiště autorů:
School of Mechanical & Automotive Engineering, Liaocheng University, Liaocheng, China
aff001; College of Engineering, China Agricultural University, Beijing, China
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226912
Souhrn
The target spraying effect of spray robots mainly depends on the control performance of the spraying arm during the processes of aiming and tracking. To further improve the robustness of the endpoint control and positioning accuracy of the spray arm, an improved potential field algorithm for the motion planning and control of the spray arm is proposed based on prophase research. The algorithm introduces a velocity potential field, visual field constraints and joint position limit constraints into the traditional artificial potential field method. The velocity potential field is used to ensure that the target state of the spraying arm is at the same velocity as the target crop (relative velocity) to achieve stable target tracking. The visual field constraints and joint position limit constraints are utilized to ensure the efficiency of the visual servo control and the movement of the spray arm. The algorithm can plan a feasible trajectory for the spraying arm in Cartesian space and image space, and use the speed controller to control the spraying arm movement along the trajectory for aiming and tracking. Simulation analysis shows that the algorithm can plan better motion trajectories than the servo controller based on image moments in previous studies. In addition, the experimental results show that the algorithm can effectively improve the robustness of targeting and tracking control for the spray robot.
Klíčová slova:
Cameras – Crops – Image processing – Imaging techniques – Prototypes – Robots – Simulation and modeling – Target detection
Zdroje
1. Qiu BJ, Yan R, Ma J, Guan XP, Ou MX. Research progress analysis of variable rate sprayer technology. Transactions of the Chinese Society for Agricultural Machinery. 2015; 46(3):59–72. doi: 10.6041/j.issn.1000-1298.2015.03.009
2. Hong SW, Zhao LY, Zhu HP. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: Tree deposition and off-target losses. Atmospheric Environment. 2018;175:109–119. doi: 10.1016/j.atmosenv.2017.12.001
3. Liu XM, Li Y, Li M, Yuan J, Fang QZ, Hou JL. Design and test of smart-targeting spraying system on boom Sprayer. Transactions of the Chinese Society for Agricultural Machinery. 2016. 47(3):37–44. doi: 10.6041/j.issn.1000-1298.2016.03.006
4. Garcia-Santillan I, Peluffo-Ordonez D, Caranqui V, Pusdá M, Garrido F, Granda P. Computer vision-based method for automatic detection of crop rows in potato fields. Advances in Intelligent Systems and Computing, 2018,721:355–366. doi: 10.1007/978-3-319-73450-7_34
5. Garcia-Santillan I, Montalvo M, Guerrero J, Pajares G. Automatic detection of curved and straight crop rows from images in maize fields. Biosystems Engineering. 2017;156:61–79. doi: 10.1016/j.biosystemseng.2017.01.013
6. Zhao DJ, Zhang B, Wang XL, Guo HH, Xu SB. Automatic target research of indoor spray robot based on image moments. Transactions of the Chinese Society for Agricultural Machinery. 2016;47(12): 22–29. doi: 10.6041/j.issn.1000-1298.2016.12.004
7. Chang WC, Shao CK. Hybrid eye-to-hand and eye-in-hand visual servoing for autonomous robotic manipulation. Sice Conference. IEEE. 2010; 415~422.
8. Hua CC, Wang YQ, Guan XP. Visual tracking control for an uncalibrated robot system with unknown camera parameters. Robotics and Computer-Integrated Manufacturing. 2014; 30(1): 19–24. doi: 10.1016/j.rcim.2013.06.002
9. Baizid K, Yousnadj A, Meddahi A, Chellali R, Iqbal J. Time scheduling and optimization of industrial robotized tasks based on genetic algorithms. Robotics and Computer-integrated Manufacturing, 2015, 34:140–150. doi: 10.1016/j.rcim.2014.12.003
10. Zhao SP, Zhu ZX, Luo JJ. Multitask-based trajectory planning for redundant space robotics using improved genetic algorithm. Applied Sciences, 2019,9(11):1–22. doi: 10.3390/app9112226
11. Ning Q, Tao GP, Chen BC, Lei YJ, Yan H, Zhao CP. Multi-UAVs trajectory and mission cooperative planning based on the Markov model. Physical communication, 2019,35:1–10. doi: 10.1016/j.phycom.2019.100717
12. Zhang Q, Wang L, Zhou DS. Trajectory planning of 7-DOF space manipulator for minimizing base disturbance. International Journal of Advanced Robotic System, 2016,13: 1–10. doi: 10.5772/62123
13. De Momi E, Kranendonk L, Valenti M, Enayati N, Ferrigno G. A neural network-based approach for trajectory planning in robot-human handover tasks. Frontiers in robotics AI, 2016,3:1–10. doi: 10.3389/frobt.2016.00034
14. Abe A.Trajectory planning for flexible Cartesian robot manipulator by using artificial neural network: numerical simulation and experimental verification. Robotica, 2011,29:797–804. doi: 10.1017/S0263574710000767
15. Xie L, Xue SF, Zhang JF, Zhang MY, Tian WL, Haugen S. A path planning approach based on multi-direction A* algorithm for ships navigating within wind farm waters. Ocean Engineering, 2019,184:311–322. doi: 10.1016/j.oceaneng.2019.04.055
16. Xu X, Hu Y, Zhai JM, Li LZ, Guo PS. A novel non-collision trajectory planning algorithm based on velocity potential field for robotic manipulator. Intermational Journal of Advanced Robotic Systems, 2018,15(4):1–10. doi: 10.1177/1729881418787075
17. Liu T, Gong GF, Yang HY, Chen YX, Zhu Y. Trajectory control of tunnel boring machine based on adaptive rectification trajectory planning and multi-cylinders coordinated control. International Journal of Precision Engineering and Manufacturing, 2019,20(10): 1721–1733. doi: 10.1007/s12541-019-00073-5
18. Yang CG, Li ZJ, Li J. Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Transactions on Cybernetics, 2012,43(1):24–36. doi: 10.1109/TSMCB.2012.2198813 22695357
19. Wang MM, Luo JJ, Walter U. Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO). ACTA Astronautica, 2015,112: 77–88. doi: 10.1016/j.actaastro.2015.03.008
20. Chen CT, Liao TT. A hybrid strategy for the time- and energy-efficient trajectory planning of parallel platform manipulators. Robotics and Computer-integrated Manufacturing, 2011,27(1):72–81. doi: 10.1016/j.rcim.2010.06.012
21. Ameni A, Khaled N. An advanced potential field method proposed for mobile robot path planning. Transactions of the Institute of Measurement and Control. 2019; 11:3132–3144. doi: 10.1177/0142331218824393
22. Kumar PB, Rawat H, Parhi DR. Path planning of humanoids based on artificial potential field method in unknown environments [J]. Expert Systems,2018,36(2):1–11. doi: 10.1111/exsy.12360
23. Chen GL, Liu J. Mobile Robot Path Planning Using Ant Colony Algorithm and Improved Potential Field Method. Computational Intelligence and Neuroscience. 2019:1–10. doi: 10.1155/2019/1932812 31198416
24. Wang WR, Zhu MC, Wang XM, He S, He JP, Xu ZB. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators. International Journal of Advanced Robotic Systems. 2018;15(5):1–13. doi: 10.1177/1729881418799562
25. Li WH, Yang CG, Jiang YM, Liu XF. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method. Journal of Advanced Transportation. 2017;1–11. doi: 10.1155/2017/4961383
26. Bence Kovács, Géza Szayer, Tajti F, Burdelis M, Péter Korondi. A novel potential field method for path planning of mobile robots by adapting animal motion attributes. Robotics and Autonomous Systems. 2016;82:24–34. doi: 10.1016/j.robot.2016.04.007
27. Mezouar Y, Chaumette F. Path planning for robust image-based control. IEEE Transactions on Robotics and Automation. 2002; 18(4): 534–549. doi: 10.1109/TRA.2002.802218
28. Lu X, Liu JT, Li HF, Li Y, Sun L. Attack and defense planning for competitive networked robots based on artificial potential field method. ROBOT. 2013; 35(2): 218–226. doi: 10.3724/SP.J.1218.2013.00218
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy