Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats
Autoři:
Emma K. A. Schmidt aff001; Abel Torres-Espin aff002; Pamela J. F. Raposo aff002; Karen L. Madsen aff004; Kristina A. Kigerl aff005; Phillip G. Popovich aff005; Keith K. Fenrich aff001; Karim Fouad aff001
Působiště autorů:
Neuroscience and Mental Health Institute, University of Alberta; Edmonton, Canada
aff001; Faculty of Rehabilitation Medicine, University of Alberta; Edmonton, Canada
aff002; Department of Physical Therapy, University of Alberta; Edmonton, Canada
aff003; Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta; Edmonton, Canada
aff004; Department of Neuroscience, Center for Brain and Spinal Cord Repair, The Belford Center for Spinal Cord Injury, The Ohio State University, Wexner Medical Center; Columbus, United States of America
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226128
Souhrn
Secondary manifestations of spinal cord injury beyond motor and sensory dysfunction can negatively affect a person’s quality of life. Spinal cord injury is associated with an increased incidence of depression and anxiety; however, the mechanisms of this relationship are currently not well understood. Human and animal studies suggest that changes in the composition of the intestinal microbiota (dysbiosis) are associated with mood disorders. The objective of the current study is to establish a model of anxiety following a cervical contusion spinal cord injury in rats and to determine whether the microbiota play a role in the observed behavioural changes. We found that spinal cord injury caused dysbiosis and increased symptoms of anxiety-like behaviour. Treatment with a fecal transplant prevented both spinal cord injury-induced dysbiosis as well as the development of anxiety-like behaviour. These results indicate that an incomplete unilateral cervical spinal cord injury can cause affective disorders and intestinal dysbiosis, and that both can be prevented by treatment with fecal transplant therapy.
Klíčová slova:
Depression – Gastrointestinal tract – Inflammatory diseases – Microbiome – principal component analysis – Rats – Spinal cord injury – Surgical and invasive medical procedures
Zdroje
1. Lim S-W, Shiue Y-L, Ho C-H, Yu S-C, Kao P-H, Wang J-J, et al. Anxiety and Depression in Patients with Traumatic Spinal Cord Injury: A Nationwide Population-Based Cohort Study. Hu W, editor. PLOS ONE. 2017;12: e0169623. doi: 10.1371/journal.pone.0169623 28081205
2. Kennedy P, Rogers BA. Anxiety and depression after spinal cord injury: A longitudinal analysis. Archives of Physical Medicine and Rehabilitation. 2000;81: 932–937. doi: 10.1053/apmr.2000.5580 10896007
3. DeVivo MJ, Black KJ, Richards JS, Stover SL. Suicide following spinal cord injury. Spinal Cord. 1991;29: 620–627. doi: 10.1038/sc.1991.91 1787986
4. Post MWM, van Leeuwen CMC. Psychosocial issues in spinal cord injury: a review. Spinal Cord. 2012;50: 382–389. doi: 10.1038/sc.2011.182 22270190
5. Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP. Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Primed Microglia. Biological Psychiatry. 2014;76: 575–584. doi: 10.1016/j.biopsych.2013.10.014 24289885
6. Maldonado-Bouchard S, Peters K, Woller SA, Madahian B, Faghihi U, Patel S, et al. Inflammation is increased with anxiety- and depression-like signs in a rat model of spinal cord injury. Brain, Behavior, and Immunity. 2016;51: 176–195. doi: 10.1016/j.bbi.2015.08.009 26296565
7. Luedtke K, Bouchard SM, Woller SA, Funk MK, Aceves M, Hook MA. Assessment of Depression in a Rodent Model of Spinal Cord Injury. Journal of Neurotrauma. 2014;31: 1107–1121. doi: 10.1089/neu.2013.3204 24564232
8. do Espírito Santo CC, da Silva Fiorin F, Ilha J, Duarte MMMF, Duarte T, Santos ARS. Spinal cord injury by clip-compression induces anxiety and depression-like behaviours in female rats: The role of the inflammatory response. Brain, Behavior, and Immunity. 2019; S0889159118303623. doi: 10.1016/j.bbi.2019.01.012 30659938
9. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience. 2008;9: 46–56. doi: 10.1038/nrn2297 18073775
10. Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences. 2013;36: 305–312. doi: 10.1016/j.tins.2013.01.005 23384445
11. Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M. Intestinal Microbiota in Patients with Spinal Cord Injury. Sun J, editor. PLOS ONE. 2016;11: e0145878. doi: 10.1371/journal.pone.0145878 26752409
12. Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. The Journal of Experimental Medicine. 2016;213: 2603–2620. doi: 10.1084/jem.20151345 27810921
13. O’Connor G, Jeffrey E, Madorma D, Marcillo A, Abreu MT, Deo SK, et al. Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model. Journal of Neurotrauma. 2018;35: 2159–2166. doi: 10.1089/neu.2017.5349 29566601
14. Bourin M, Hascoët M. The mouse light/dark box test. European Journal of Pharmacology. 2003;463: 55–65. doi: 10.1016/s0014-2999(03)01274-3 12600702
15. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 2000;39: 777–787. doi: 10.1016/s0028-3908(00)00005-8 10699444
16. A Geissler S. Rodent Models and Behavioral Outcomes of Cervical Spinal Cord Injury. J Spine. 2013 [cited 4 Jul 2019]. doi: 10.4172/2165-7939.S4-001 25309824
17. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology. 1987;93. doi: 10.1007/BF00187257 3124165
18. Pellow S, Chopin P, File SE, Briley M. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods. 1985;14: 149–167. doi: 10.1016/0165-0270(85)90031-7 2864480
19. Albrechet-Souza L, Borelli KG, Carvalho MC, Brandão ML. The anterior cingulate cortex is a target structure for the anxiolytic-like effects of benzodiazepines assessed by repeated exposure to the elevated plus maze and Fos immunoreactivity. Neuroscience. 2009;164: 387–397. doi: 10.1016/j.neuroscience.2009.08.038 19699782
20. Bertoglio LJ, Carobrez AP. Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacology Biochemistry and Behavior. 2002;73: 963–969. doi: 10.1016/S0091-3057(02)00958-9
21. File SE, Mabbutt PS, Hitchcott PK. Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology. 1990;102: 98–101. doi: 10.1007/bf02245751 1975449
22. Rodgers RJ, Shepherd JK. Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacology. 1993;113: 237–242. doi: 10.1007/bf02245704 7855188
23. Zhou H, Yu C-L, Wang L-P, Yang Y-X, Mao R-R, Zhou Q-X, et al. NMDA and D1 receptors are involved in one-trial tolerance to the anxiolytic-like effects of diazepam in the elevated plus maze test in rats. Pharmacology Biochemistry and Behavior. 2015;135: 40–45. doi: 10.1016/j.pbb.2015.05.009 26004015
24. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology. 2003;463: 3–33. doi: 10.1016/s0014-2999(03)01272-x 12600700
25. Chapman BC, Moore HB, Overbey DM, Morton AP, Harnke B, Gerich ME, et al. Fecal microbiota transplant in patients with Clostridium difficile infection: A systematic review. Journal of Trauma and Acute Care Surgery. 2016;81: 756–764. doi: 10.1097/TA.0000000000001195 27648772
26. Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal Microbiota Transplantation for Clostridium difficile Infection: Systematic Review and Meta-Analysis: American Journal of Gastroenterology. 2013;108: 500–508. doi: 10.1038/ajg.2013.59 23511459
27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology. 2009;75: 7537–7541. doi: 10.1128/AEM.01541-09 19801464
28. R Core Team. R: A language and environment for statistical computing. Available: https://www.R-project.org/
29. R Studio Team. RStudio: integrated development for R. Boston, MA: RStudio; 2015. Available: http://www.rstudio.com/
30. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Watson M, editor. PLoS ONE. 2013;8: e61217. doi: 10.1371/journal.pone.0061217 23630581
31. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43: e47–e47. doi: 10.1093/nar/gkv007 25605792
32. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. The Annals of Applied Statistics. 2016;10: 946–963. doi: 10.1214/16-AOAS920 28367255
33. Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Package ‘vegan.’ Community ecology package. 2013;Version 2.5. Available: https://CRAN.R-project.org/package=vegan
34. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 2013;31: 814–821. doi: 10.1038/nbt.2676 23975157
35. Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiology. 2014;14: 189. doi: 10.1186/1471-2180-14-189 25028050
36. Myers SP, Hawrelak JA. The causes of intestinal dysbiosis: a review. Alternative Medicine Review. 2004;9: 180–197. 15253677
37. Krassioukov A. Autonomic function following cervical spinal cord injury. Respiratory Physiology & Neurobiology. 2009;169: 157–164. doi: 10.1016/j.resp.2009.08.003 19682607
38. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28: 203–209. 25830558
39. Lucin K, Sanders V, Jones T, Malarkey W, Popovich P. Impaired antibody synthesis after spinal cord injury is level dependent and is due to sympathetic nervous system dysregulation. Experimental Neurology. 2007;207: 75–84. doi: 10.1016/j.expneurol.2007.05.019 17597612
40. Zhang Y, Guan Z, Reader B, Shawler T, Mandrekar-Colucci S, Huang K, et al. Autonomic Dysreflexia Causes Chronic Immune Suppression after Spinal Cord Injury. Journal of Neuroscience. 2013;33: 12970–12981. doi: 10.1523/JNEUROSCI.1974-13.2013 23926252
41. Lynch A, Wong C, Anthony A, Dobbs B, Frizelle F. Bowel dysfunction following spinal cord injury: a description of bowel function in a spinal cord-injured population and comparison with age and gender matched controls. Spinal Cord. 2000;38: 717–723. doi: 10.1038/sj.sc.3101058 11175370
42. Pop M, Walker AW, Paulson J, Lindsay B, Antonio M, Hossain M, et al. Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biology. 2014;15: R76. doi: 10.1186/gb-2014-15-6-r76 24995464
43. Bik EM, Relman DA. Unrest at home: diarrheal disease and microbiota disturbance. Genome Biology. 2014;15: 120. doi: 10.1186/gb4182 25002208
44. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience. 2016;36: 7428–7440. doi: 10.1523/JNEUROSCI.1114-16.2016 27413153
45. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice: Commensal microbiota and stress response. The Journal of Physiology. 2004;558: 263–275. doi: 10.1113/jphysiol.2004.063388 15133062
46. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice: Behavior in germ-free mice. Neurogastroenterology & Motility. 2011;23: 255–e119. doi: 10.1111/j.1365-2982.2010.01620.x 21054680
47. Huang R, Wang K, Hu J. Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8: 483. doi: 10.3390/nu8080483 27509521
48. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170: 1179–1188. doi: 10.1016/j.neuroscience.2010.08.005 20696216
49. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterology & Motility. 2014;26: 1155–1162. doi: 10.1111/nmo.12378 24888394
50. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nature Microbiology. 2019;4: 623–632. doi: 10.1038/s41564-018-0337-x 30718848
51. Alam R, Abdolmaleky HM, Zhou J-R. Microbiome, inflammation, epigenetic alterations, and mental diseases. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2017;174: 651–660. doi: 10.1002/ajmg.b.32567 28691768
52. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience. 2017;20: 145–155. doi: 10.1038/nn.4476 28092661
53. Smith PA. The tantalizing links between gut microbes and the brain. Nature. 2015;526: 312–314. doi: 10.1038/526312a 26469024
54. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry. 2010;67: 446–457. doi: 10.1016/j.biopsych.2009.09.033 20015486
55. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, et al. The Relationship of Depression and Stressors to Immunological Assays: A Meta-Analytic Review. Brain, Behavior, and Immunity. 2001;15: 199–226. doi: 10.1006/brbi.2000.0597 11566046
56. Miller AH, Maletic V, Raison CL. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biological Psychiatry. 2009;65: 732–741. doi: 10.1016/j.biopsych.2008.11.029 19150053
57. O’Donovan A, Hughes BM, Slavich GM, Lynch L, Cronin M-T, O’Farrelly C, et al. Clinical anxiety, cortisol and interleukin-6: Evidence for specificity in emotion–biology relationships. Brain, Behavior, and Immunity. 2010;24: 1074–1077. doi: 10.1016/j.bbi.2010.03.003 20227485
58. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of Anti-inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Psychiatry. 2014;71: 1381. doi: 10.1001/jamapsychiatry.2014.1611 25322082
59. Popovich P, McTigue D. Damage control in the nervous system: beware the immune system in spinal cord injury. Nature Medicine. 2009;15: 736–737. doi: 10.1038/nm0709-736 19584863
60. Schwab JM, Zhang Y, Kopp MA, Brommer B, Popovich PG. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury. Experimental Neurology. 2014;258: 121–129. doi: 10.1016/j.expneurol.2014.04.023 25017893
61. Berg R.D. Bacterial translocation from the gastrointestinal tract. Journal of Medicine. 1992;23: 217–244. 1479301
62. Liu J, An H, Jiang D, Huang W, Zou H, Meng C, et al. Study of Bacterial Translocation From Gut After Paraplegia Caused by Spinal cord Injury in Rats. Spine. 2004;29: 164–169. doi: 10.1097/01.BRS.0000107234.74249.CD 14722407
63. O’Dwyer ST. A Single Dose of Endotoxin Increases Intestinal Permeability in Healthy Humans. Archives of Surgery. 1988;123: 1459. doi: 10.1001/archsurg.1988.01400360029003 3142442
64. Guo S, Al-Sadi R, Said HM, Ma TY. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability in Vitro and in Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. The American Journal of Pathology. 2013;182: 375–387. doi: 10.1016/j.ajpath.2012.10.014 23201091
65. Yirmiya R. Endotoxin produces a depressive-like episode in rats. Brain Research. 1996;711: 163–174. doi: 10.1016/0006-8993(95)01415-2 8680860
66. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, et al. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology. 2007;32: 516–531. doi: 10.1016/j.psyneuen.2007.03.005 17482371
67. Peruga I, Hartwig S, Thöne J, Hovemann B, Gold R, Juckel G, et al. Inflammation modulates anxiety in an animal model of multiple sclerosis. Behavioural Brain Research. 2011;220: 20–29. doi: 10.1016/j.bbr.2011.01.018 21255614
68. File SE. One-trial tolerance to the anxiolytic effects of chlordiazepoxide in the plus-maze. Psychopharmacology. 1990;100: 281–282. doi: 10.1007/bf02244419 1968279
69. Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research. 2002;134: 49–57. doi: 10.1016/s0166-4328(01)00452-1 12191791
70. Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc. 2012;7: 1009–1014. doi: 10.1038/nprot.2012.044 22555240
71. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology. 1985;85: 367–370. doi: 10.1007/bf00428203 3923523
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy