A clinical method for estimating the modulus of elasticity of the human cornea in vivo
Autoři:
David C. Pye aff001
Působiště autorů:
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
aff001
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224824
Souhrn
Background
To develop a method, using current clinical instrumentation, to estimate the Young’s modulus of the human cornea in vivo.
Methods
Central corneal curvature (CCC), central corneal thickness(CCT), intraocular pressure (IOP) was measured with the Goldmann tonometer (IOPG) and the Pascal Dynamic Corneal Tonometer(PDCT) in one eye of 100 normal young human subjects (21.07 ± 2.94 years) in vivo. The Orssengo and Pye algorithm was used to calculate the Young’s modulus of the corneas of these subjects.
Results
The Young’s modulus(E) of the corneas of the subjects using the PDCT and IOPG results (Ecalc) was 0.25 ± 0.10MPa, and without the PDCT results (Eiopg) was 0.29 ± 0.06MPa. The difference in these results is due to the difference in tonometry results between the two instruments, as the mean PDCT result for the subjects was 16.89 ± 2.49mmHg and the IOPG result 15.06 ± 2.71mmHg. E was affected by the CCC of the subjects but more particularly by the CCT and IOP measurements. Corneal stiffness results are also presented.
Conclusion
Two methods have been developed to estimate the Young’s modulus of the human cornea in vivo using current clinical instrumentation. One method (Ecalc) is applicable to the general corneal condition, and Eiopg to the normal cornea, and these results can be used to calculate corneal stiffness.
Klíčová slova:
Algorithms – Behavior – Cornea – Eye lens – Eyes – Instrumentation – Intraocular pressure – Stiffness
Zdroje
1. Girard MJ, Dupps WJ, Baskaram M, Scarcelli G, Yun SH, Quigley HA et al. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res 2015:40:1–18. doi: 10.3109/02713683.2014.914543 24832392
2. Dupps WJ, Roberts CJ. Corneal biomechanics: a decade later. J Cataract Ref Surg 2014:40;857.
3. Kotecha A. What biomechanical properties of the cornea are relevant to the clinician? Surv Ophthalmol 2007;52 Suppl 2:S109–14.
4. Hon Y, Chen G-Z, Lu S-H, Lam DCC, Lam AKC. High myopes have lower normalised corneal tangent moduli (less ‘stiff” corneas) than low myopes. Ophthalmic Physiol Opt 2016;37:42–50. doi: 10.1111/opo.12335 27873338
5. Wan K, Cheung SW, Wolffsohn JS, Orr JB, Cho P. Role of corneal biomechanical properties in predicting of speed of myopia progression in children wearing orthokeratology lenses or single-vision spectacles. BMJ Open Ophth 2018; 3:e000204. doi: 10.1136/bmjophth-2018-000204 eCollection 2018. 30687783
6. Ramm L, Herber R, Spoerl E, Pillunat LE, Terai N. Measurement of corneal biomechanical properties in diabetes mellitus using the Ocular Response Analyzer and the Corvis ST. Cornea 2019;5:595–99.
7. Wu N, Chen Y, Yu X, Li M, Wen W, Sun X. Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLoS One. 2016 May 17;11(5):e0155527. doi: 10.1371/journal.pone.0155527 eCollection 2016. 27187282
8. Zhao Y, Shen Y, Yan Z, Tian M, Zhao J, Zhou X. Relationship among stiffness, thickness, and biomechanical parameters measured by the Corvis ST, Pentacam and ORA in keratoconus. Front Physiol. 2019 Jun 13;10:740. doi: 10.3389/fphys.2019.00740 eCollection 2019. 31263429
9. Mahendradas P, Francis M, Vala R, Poornachandra B, Kawali A, Sheytty R et al. Quantification of ocular biomechanics in ocular manifestations of systemic autoimmune diseases. Ocul Immunol Inflamm. 2018 Aug 7:1–11. doi: 10.1080/09273948.2018.1501491 [Epub ahead of print]. 30084704
10. Luz A, Faria-Correia F, Salomao MQ, Lopes BT, Ambrosio R Jr. Corneal biomechanics: Where are we? J Curr Ophthalmol 2016:97–8. doi: 10.1016/j.joco.2016.07.004 27579450
11. Woo SL, Kobayashi AS, Schlegel WA, Lawrence C. Nonlinear material properties of intact cornea and sclera. Exp Eye Res 1972;14:29–39. doi: 10.1016/0014-4835(72)90139-x 5039845
12. Smolek MK. Holographic interferometry of intact and radially excised human eye-bank corneas. J Cataract Refract Surg 1994:20; 277–86. doi: 10.1016/s0886-3350(13)80578-0 8064603
13. Hjortdahl JO. Biomechanical studies of the human cornea. Acta Ophthamol Scand 1995;77:364–5.
14. Elsheikh A, Wang D, Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg 2007; 23:808–18. 17985801
15. Tanter M, Touboul D, Gennisson JL, Bercoff J, Fink M. high-resolution quantitative imaging of corneal elasticity using supersonic shear imaging. IEE Trans Med Imag 2009;28:1881–93.
16. Knox Cartwright NE, Tyrer JR, Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011;4324–9. doi: 10.1167/iovs.09-4798 20847118
17. Last JA, Thomasy SM, Croasdale CR, Russell P, Murphy CJ. Compliance profile of the human cornea as measured by atomic force microscopy. Micron 43 2012;1293–98. doi: 10.1016/j.micron.2012.02.014 22421334
18. Ford MR, Sinha Roy A, Rollins AM, Dupps WJ Jr. serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence tomography. J Cataract Refract Surg 2014;40:1041–7. doi: 10.1016/j.jcrs.2014.03.017 24767794
19. Zappone B, Patil NJ, Lombardo M, Lombardo G. Transient viscous response of the human cornea probed with the surface force apparatus. PLoS One. 2018 May 25;13(5):e0197779. doi: 10.1371/journal.pone.0197779 eCollection 2018. 29799859
20. Scarcellis G, Yun SH. In vivo Brilloin optical microscopy of the human eye. Opt Express 2012;20:9197–202. doi: 10.1364/OE.20.009197 22513631
21. Yun SH, Chernyak D. Brilluoin microscopy: assessing ocular tissue biomechanics. Curr Opin Ophthalmol 2018;29:299–305. doi: 10.1097/ICU.0000000000000489 29771749
22. Lam AK, Hon Y, Leung LK, Lam DC. Repeatability of a novel corneal indentation device for corneal biomechanical measurement. Ophthalmic Physiol Opt 2015;35:455–61. doi: 10.1111/opo.12219 26094834
23. Shih P-J, Cao H-J, Hunag C-J, Wang I-J, Yen J-Y. A corneal elastic dynamic model derived from Scheimpflug imaging technology. Ophthalmic Physiol Opt 2015;35:663–72. doi: 10.1111/opo.12240 26353939
24. Sit AJ, Lin S-C, Kazemi A, McLaren JW, Pruet CM. In vivo noninvasive measurement of Young’s modulus in human eyes: a feasibility study. J Glaucoma 2017;26:967–73. doi: 10.1097/IJG.0000000000000774 28858155
25. Hamilton KE, Pye DC. Young’s modulus in normal corneas and the effect on applanation tonometry. Optom Vis Sci 2008;6:445–50.
26. Orssengo G, Pye DC. Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo. Bull Math Biol 1999;61:551–72. doi: 10.1006/bulm.1999.0102 17883231
27. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; Feb 8;1(8476):307–10. 2868172
28. Kiely PM, Carney LG, Smith G. Diurnal variation of corneal topography and thickness. Am J Optom Physiol Optics 1982;59:976–82.
29. Hovding G. A clinical study of the association between thickness and curvature of the central cornea. Acta Ophthalmol (Copenhag) 1983;61:461–6.
30. Tomidokoro A, Araie M, Iwase A; The Tajimi Study Group. Corneal thickness and relating factors in a population-based study in Japan: The Tajimi Study. Am J Ophthalmol 2007;144:152–4. doi: 10.1016/j.ajo.2007.02.031 17601447
31. Lowe RF. Central corneal thickness. Brit J Ophthalmol 1969;53:824–6.
32. Tomlinson A. A clinical study of the central and peripheral thickness and curvature of the central cornea. Acta Ophthalmol (Copenhag) 1972;50:73–82.
33. International Standards Organisation (2009): Ophthalmic Instruments–Tonometers (ISO 8612:2009). Geneva: International Standard Organization.
34. Whitacre MM, Stein R. Sources of error with use of Goldmann-type tonometers. Surv Ophthalmol 1993;38:1–30. doi: 10.1016/0039-6257(93)90053-a 8235993
35. Kniestedt C, Nee M, Stamper RL. Dynamic contour tonometry. Arch Ophthalmol 2004;122:1287–93. doi: 10.1001/archopht.122.9.1287 15364707
36. Kniestedt, Lin S, Chloe J, Bostrom A, Nee M, Stamper RL. Clinical comparison of contour and applanation tonometry and their relationship to pachymetry. Arch Ophthalmol 2005;123:1532–37. doi: 10.1001/archopht.123.11.1532 16286615
37. Kniedstadt C, Nee M, Stamper RL. Accuracy of dynamic contour tonometry compared with applanation tonometry in human cadaver eyes of different hydration states. Graefes Arch Clin Exp Ophthalmol 2005;243:359–66. doi: 10.1007/s00417-004-1024-6 15864625
38. Hamilton KE, Pye DC, Kao L, Pham N, Tran A-Q N. The effect of corneal edema on dynamic contour and Goldmann tonometry. Optom Vis Sci 2008;86:451–6.
39. Pasche M, Wilmsmeyer S, Lautebach S, Funk K. Dynamic contour tonometry versus Goldmann applanation tonometry: a comparative study. Graefes Arch Clin Exp Ophthalmol 2005;24:763–7.
40. Kaufman C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with goldmann applanation tonometry. Invest Ophthalmol Vis Sci 2004;45:3118–21. doi: 10.1167/iovs.04-0018 15326129
41. Kotecha A, White E, Schlottmann PG, Garway-Heath DF. Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers. Ophthalmology 2010;117:730–7. doi: 10.1016/j.ophtha.2009.09.020 20122737
42. Schneider E, Grehn F. Intraocular pressure measurement-comparison of dynamic contour tonometry and Goldmann applanation tonometry. J Glaucoma 2006;15:2–6. doi: 10.1097/01.ijg.0000196655.85460.d6 16378009
43. Andreanos K, Koutsandrea C, Papconstantinouu D, Kotoulas A, Dimitrakis P, Moschos MM. Comparison of Goldmann applanation and pascal dynamic contour tonometry in relation to central corneal thickness and corneal curvature. Clin Ophthalmol 2016;10:2477–84. doi: 10.2147/OPTH.S115203 28003737
44. Elsheikh A, Wang D. Numerical modelling of corneal biomechanical behaviour. Comput Methods in Biomech Biomed Engin 2007;10:85–95.
45. Elsheikh A, Wang D, Kotecha A, Brown M, Garway-Heath D. Evaluation of Goldman applanation tonometry using a nonlinear finite element ocular model. Annals Biomed Eng 2006;34:1628–40.
46. Osborne SF, Williams R, Batterbury M, Wong D. Does the surface property of a disposable applanation tonometer account for its underestimation of intraocular pressure when compared with the Goldmann tonometer? Graefes Arch Clin Exp Ophthalmol 2007;245:555–9. doi: 10.1007/s00417-006-0380-9 16912886
47. Schwartz NJ, Mackay RS, Sackman JR. A theortetical and experimental study of the mechanical behaviour of the cornea with the application to the measurement of intraocular pressure. Bull Math Bipophys 1966;28: 585–631.
48. Chihara E. Assessment of true intraocular pressure.: the gap between theory and practical data. Surv Ophthalmol 2008;53:203–18. doi: 10.1016/j.survophthal.2008.02.005 18501267
49. Kwon TH, Ghaboussi J, Pecknold DA, Hashash YM. Effect of cornea material stiffness on measured intraocular pressure. J Biomech 2008;41:1707–13. doi: 10.1016/j.jbiomech.2008.03.004 18455173
50. Kaufman HE. Pressure measurement: which tonometer? Invest Ophthalmol 1972;11:80–85. 5009106
51. Simon G, Small RH, Ren Q, Parel J-M, Ing ETS. Effect of corneal hydration on Goldmann applanation tonometry and corneal topography. Refract Corneal Surg 1993;9;110–17. 8494810
52. Schneider E, Grehn F. Intraocular pressure measurement-comparison of dynamic contour tonometry and Goldmann applanation tonometry. J Glaucoma 2006;15:2–6. doi: 10.1097/01.ijg.0000196655.85460.d6 16378009
53. Sadigh AL, Fouladi RF, Hashemi H, Beheshtnejad AH. A comparison between Goldmann applanation tonometry and dynamic contour tonometry after photorefractive keratectomy. Graefes Arch Clin Exp Ophthalmol 2013;251:603–8. doi: 10.1007/s00417-012-2142-1 22940796
54. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Catararact Ref Surg 2005;31:146–55.
55. Hatami-Marbini H, Etebu E. Hydration dependent biomechanical properties of the corneal stroma. Exp Eye Res 2013;116:47–54. doi: 10.1016/j.exer.2013.07.016 23891861
56. Palko JR, Liu J. Definitions and concepts. In: Roberts CJ, Liu J, editors. Corneal Biomechanics: From Theory to Practice. 1st ed. Amsterdam. Kugler Publications; 2016 p7–8.
57. Palko JR, Liu J. Definitions and concepts. In: Roberts CJ, Liu J, editors. Corneal Biomechanics: From Theory to Practice. 1st ed. Amsterdam: Kugler Publications; 2016. p1–24.
58. Elsheikh A. Understanding Corneal Biomechanics Through Experimental Assessment and Numerical Simulation. New York. Nova Science Publications. 2010. p42.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy