A scoping review of importation and predictive models related to vector-borne diseases, pathogens, reservoirs, or vectors (1999–2016)
Autoři:
Tara Sadeghieh aff001; Lisa A. Waddell aff001; Victoria Ng aff001; Alexandra Hall aff001; Jan Sargeant aff002
Působiště autorů:
Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
aff001; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
aff002; Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227678
Souhrn
Background
As globalization and climate change progress, the expansion and introduction of vector-borne diseases (VBD) from endemic regions to non-endemic regions is expected to occur. Mathematical and statistical models can be useful in predicting when and where these changes in distribution may happen. Our objective was to conduct a scoping review to identify and characterize predictive and importation models related to vector-borne diseases that exist in the global literature.
Methods
A literature search was conducted to identify publications published between 1999 and 2016 from five scientific databases using relevant keywords. All publications had to be in English or French, and include a predictive or importation model on VBDs, pathogens, reservoirs and/or vectors. Relevance screening and data characterization were performed by two reviewers using pretested forms. The data were analyzed using descriptive statistics.
Results
The search initially identified 19 710 unique articles, reports, and conference abstracts. This was reduced to 428 relevant documents after relevance screening and data charting. About half of the models used mathematical techniques, and the remainder were statistical. Most of the models were predictive (87%), rather than importation (5%). The most commonly investigated diseases were malaria and dengue fever. Around 12% of the publications did not report all the parameters used in their model. Only 29% of the models incorporated the impacts of climate change.
Conclusions
A wide variety of mathematical and statistical models on vector-borne diseases exist. Researchers creating their own mathematical and/or statistical models may be able to use this scoping review to be informed about the diseases and/or regions, parameters, model types, and methodologies used in published models.
Klíčová slova:
Climate change – Climate modeling – Database searching – Disease vectors – Forecasting – Mathematical models – Pathogens – Statistical models
Zdroje
1. Banu S, Hu W, Guo Y, Hurst C, Tong S. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environ Int. 2014;63:137–42. doi: 10.1016/j.envint.2013.11.002 24291765
2. Ogden NH, Bigras-Poulin M, Hanincova K, Maarouf A, O'Callaghan CJ, Kurtenbach K. Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol. 2008;254(3):621–32. doi: 10.1016/j.jtbi.2008.06.020 18634803
3. Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Haghdoost AA, Akhavan AA, Rassi Y, Karimi A, et al. Modeling the distribution of cutaneous leishmaniasis vectors (Psychodidae: Phlebotominae) in Iran: A potential transmission in disease prone areas. J Med Entomol. 2015;52(4):557–65. doi: 10.1093/jme/tjv058 26335462
4. Ogden NH, Lindsay LR, Leighton PA, Sheppard A. Predicting the rate of invasion of the agent of Lyme disease Borrelia burgdorferi. J Appl Ecol. 2013;50(2):510–8.
5. Nah K, Mizumoto K, Miyamatsu Y, Yasuda Y, Kinoshita R, Nishiura H. Estimating risks of importation and local transmission of Zika virus infection. PeerJ. 2016;4:e1904. doi: 10.7717/peerj.1904 27069825
6. Rocklov J, Quam MB, Sudre B, German M, Kraemer MUG, Brady O, et al. Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine. 2016;9:250–6. doi: 10.1016/j.ebiom.2016.06.009 27344225
7. Butterworth MK, Morin CW, Comrie AC. An analysis of the potential impact of climate change on dengue transmission in the southeastern United States. Environ Health Perspect. 2017;125(4):579–85. doi: 10.1289/EHP218 27713106
8. Ogden NH, Lindsay LR, Morshed M, Sockett PN, Artsob H. The emergence of Lyme disease in Canada. CMAJ. 2009;180(12):1221–4. doi: 10.1503/cmaj.080148 19506281
9. Parham PE, Michael E. Modelling climate change and malaria transmission. Adv Exp Med Biol. 2010:284–99.
10. Fischer D, Thomas SM, Suk JE, Sudre B, Hess A, Tjaden NB, et al. Climate change effects on chikungunya transmission in Europe: Geospatial analysis of vector's climatic suitability and virus' temperature requirements. Int J Health Geogr. 2013;12:51. doi: 10.1186/1476-072X-12-51 24219507
11. Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007;7(1):76–85. doi: 10.1089/vbz.2006.0562 17417960
12. Tavecchia G, Miranda M, Barcelo DBC, Paredes-Esquivel C, Schwarz C. Modelling the range expansion of the tiger mosquito in a Mediterranean island accounting for imperfect detection. Front Zool. 2017;14(39).
13. Bogoch II, Brady OJ, Kraemer MUG, German M, Creatore MI, Brent S, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: A modelling study. Lancet Infect Dis. 2016;16(11):1237–45. doi: 10.1016/S1473-3099(16)30270-5 27593584
14. Gardner L, Sarkar S. A global airport-based risk model for the spread of dengue infection via the air transport network. PLoS One. 2013;8(8):e72129. doi: 10.1371/journal.pone.0072129 24009672
15. Peters MDJ, Godfrey CM, McInerney P, Soares CB, Khalil H, Parker D. Metholody for JBI scoping reviews. Australia: The Joanna Briggs Institute; 2015.
16. Brownstein JS, Rosen H, Purdy D, Miller JM, Merlino M, Mostashari F, et al. Spatial analysis of West Nile virus: Rapid risk assessment of an introduced vector-borne zoonosis. Vector Borne Zoonotic Dis. 2002;2(3):157–64. doi: 10.1089/15303660260613729 12737545
17. Abeyrathna MPAR, Abeygunawrdane DAA, Bandara M, Perera S, Maldeniya D, Madhawa K, et al. Dengue propagation prediction using human mobility. Moratuwa Engineering Research Conference 2016. p. 156–61.
18. McCreesh N, Nikulin G, Booth M. Predicting the effects of climate change on Schistosoma mansoni transmission in eastern Africa. Parasit Vectors. 2015;8:4. doi: 10.1186/s13071-014-0617-0 25558917
19. Poncon N, Tran A, Toty C, Luty AJ, Fontenille D. A quantitative risk assessment approach for mosquito-borne diseases: Malaria re-emergence in southern France. Malar J. 2008;7:147. doi: 10.1186/1475-2875-7-147 18673551
20. Kaga T, Ohta S. Ecophysiological and climatological effects on distribution of vector species and malaria incidence in India. Int J Environ Res Public Health. 2012;9(12):4704–14. doi: 10.3390/ijerph9124704 23249857
21. Martins-Bede FT, Dutra LV, Freitas CC, Guimaraes RJPS, Amaral RS, Drummond SC, et al. Schistosomiasis risk mapping in the state of Minas Gerais, Brazil, using a decision tree approach, remote sensing data and sociological indicators. Mem Inst Oswaldo Cruz. 2010;105(4):541–8. doi: 10.1590/s0074-02762010000400033 20721506
22. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I. A climate distribution model of malaria transmission in Sudan. Geospat Health. 2012;7(1):27–36. doi: 10.4081/gh.2012.102 23242678
23. Luz PM, Lima-Camara TN, Bruno RV, de Castro MG, Sorgine MHF, Lourenco de Oliveira R, et al. Potential impact of a presumed increase in the biting activity of dengue-virus-infected Aedes agypti (Diptera: Culicidae) females on virus transmission dynamics. Mem Inst Oswaldo Cruz. 2011;106(6):755–8. doi: 10.1590/s0074-02762011000600017 22012232
24. Peterson AT, Campbell LP. Global potential distribution of the mosquito Aedes notoscriptus, a new alien species in the United States. J Vector Ecol. 2015;40(1):191–4. doi: 10.1111/jvec.12151 26047202
25. Mishra S, Fisman DN, Boily M. The ABC of terms used in mathematical models of infectious diseases. J Epidemol Community Health. 2011;65:87–94.
26. McCullahgh P. What is a statistical model? The Annals of Statistics. 2002;30(5):1225–67.
27. Kopec JA, Fines P, Manuel DG, Buckeridge DL, Flanagan WM, Oderkirk J, et al. Validation of population-based disease simulation models: A review of concepts and methods. BMC Public Health. 2010;10(710).
28. Climate Change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2014.
29. Egger M, Johnson L, Althaus C, Schoni A, Salanti G, Low N, et al. Developing WHO guidelines: Time to formally include evidence from mathematical modelling studies. F1000 Research. 2018;6:1584–607.
30. Brauer F. Mathematical epidemiology: Past, present, and future. Infect Dis Modelling. 2017;2(2):113–27.
31. Carlson CJ, Dougherty ER, Getz W. An ecological assessment of the pandemic threat of Zika virus. PLoS Negl Trop Dis. 2016;10(8):e0004968. doi: 10.1371/journal.pntd.0004968 27564232
32. Massad E, Tan SH, Khan K, Wilder-Smith A. Estimated Zika virus importations to Europe by travellers from Brazil. Glob Health Action. 2016;9:31669. doi: 10.3402/gha.v9.31669 27193266
33. Perkins TA, Siraj AS, Ruktanonchai CW, Kraemer MU, Tatem AJ. Model-based projections of Zika virus infections in childbearing women in the Americas. Nat Microbiol. 2016;1(9):16126. doi: 10.1038/nmicrobiol.2016.126 27562260
34. Yakob L, Clements ACA. A mathematical model of chikungunya dynamics and control: The major epidemic on Reunion Island. PLoS One. 2013;8(3).
35. Bee TK, Lue KH, Yean TS. Modeling dengue fever subject to temperature change. International Conference on Fuzzy Systems and Knowledge Discovery2009. p. 61–5.
36. Kursah MB. Modelling malaria susceptibility using geographic information system. GeoJournal. 2016;82(6):1101–11.
37. Karl S, Halder N, Kelso JK, Ritchie SA, Milne GJ. A spatial simulation model for dengue virus infection in urban areas. BMC Infect Dis. 2014;14:447–64. doi: 10.1186/1471-2334-14-447 25139524
38. Monath TP, Vasconcelos PFC. Yellow fever. J Clin Virol. 2015;64:160–73. doi: 10.1016/j.jcv.2014.08.030 25453327
39. Riley S, Leung GM, Ho LM, Cowling BJ. Transmission of Japanese encephalitis virus in Hong Kong. Hong Kong Med J. 2012;18:S45–S6.
40. Baeza A, Bouma MJ, Dhiman R, Pascual M. Malaria control under unstable dynamics: reactive vs. climate-based strategies. Acta Trop. 2014;129:42–51. doi: 10.1016/j.actatropica.2013.04.001 23567551
41. Addawe J, Pajimola AK. Dynamics of climate-based malaria transmission model with age-structured human population. AIP Conference Proceedings 2016.
42. Arsevska E, Hellal J, Mejri S, Hammami S, Marianneau P, Calavas D, et al. Identifying areas suitable for the occurrence of Rift Valley fever in North Africa: Implications for surveillance. Transbound Emerg Dis. 2016;63(6):658–74. doi: 10.1111/tbed.12331 25655790
43. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6(7).
44. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche P, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007;335:806–8. doi: 10.1136/bmj.39335.541782.AD 17947786
45. Khormi HM, Kumar L. Climate change and the potential global distribution of Aedes aegypti: Spatial modelling using geographical information system and CLIMEX. Geospat Health. 2014;8(2):405–15. doi: 10.4081/gh.2014.29 24893017
46. Martens P, Kovats RS, Nijhof S, de Vries P, Livermore MTJ, Bradley DJ, et al. Climate change and future populations at risk of malaria. Global Environmental Change. 1999;9:S89–S107.
47. Fischer D, Thomas SM, Neteler M, Tjaden NB, Beierkuhnlein C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: Comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance. 2014.
48. Dhiman RC, Pahwa S, Dhillon GP, Dash AP. Climate change and threat of vector-borne diseases in India: are we prepared? Parasitol Res. 2010;106(4):763–73. doi: 10.1007/s00436-010-1767-4 20155369
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy