Genome-wide association study of metabolic syndrome in Korean populations
Autoři:
Seung-Won Oh aff001; Jong-Eun Lee aff002; Eunsoon Shin aff002; Hyuktae Kwon aff003; Eun Kyung Choe aff004; Su-Yeon Choi aff005; Hwanseok Rhee aff002; Seung Ho Choi aff005
Působiště autorů:
Department of Family Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
aff001; DNA Link, Inc., Seoul, South Korea
aff002; Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
aff003; Department of Surgery, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
aff004; Department of Internal Medicine, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, South Korea
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227357
Souhrn
Metabolic syndrome (MetS) which is caused by obesity and insulin resistance, is well known for its predictive capability for the risk of type 2 diabetes mellitus and cardiovascular disease. The development of MetS is associated with multiple genetic factors, environmental factors and lifestyle. We performed a genome-wide association study to identify single-nucleotide polymorphism (SNP) related to MetS in large Korean population based samples of 1,362 subjects with MetS and 6,061 controls using the Axiom® Korean Biobank Array 1.0. We replicated the data in another sample including 502 subjects with MetS and 1,751 controls. After adjusting for age and sex, rs662799 located in the APOA5 gene were significantly associated with MetS. 15 SNPs in GCKR, C2orf16, APOA5, ZPR1, and BUD13 were associated with high triglyceride (TG). 14 SNPs in APOA5, ALDH1A2, LIPC, HERPUD1, and CETP, and 2 SNPs in MTNR1B were associated with low high density lipoprotein cholesterol (HDL-C) and high fasting blood glucose respectively. Among these SNPs, 6 TG SNPs: rs1260326, rs1260333, rs1919127, rs964184, rs2075295 and rs1558861 and 11 HDL-C SNPs: rs4775041, rs10468017, rs1800588, rs72786786, rs173539, rs247616, rs247617, rs3764261, rs4783961, rs708272, and rs7499892 were first discovered in Koreans. Additional research is needed to confirm these 17 novel SNPs in Korean population.
Klíčová slova:
Alleles – Blood pressure – diabetes mellitus – Europe – Genome-wide association studies – Hypertension – Metabolic syndrome – Molecular genetics
Zdroje
1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120(16):1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644 19805654
2. Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev Chronic Dis. 2017 Mar 16;14:E24.
3. Lim S, Jang HC, Lee HK, Kimm KC, Park C, Cho NH. A rural-urban comparison of the characteristics of the metabolic syndrome by gender in Korea: the Korean Health and Genome Study (KHGS). J Endocrinol Invest. 2006 Apr; 29(4):313–9. doi: 10.1007/BF03344102 16699297
4. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014;2014:943162. doi: 10.1155/2014/943162 24711954
5. Povel CM, Boer JM, Reiling E, Feskens EJ. Genetic variants and the metabolic syndrome: a systematic review. Obes Rev. 2011;12(11):952–67. doi: 10.1111/j.1467-789X.2011.00907.x 21749608
6. Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome: a new worldwide definition. Lancet 2005;366:1059–62. doi: 10.1016/S0140-6736(05)67402-8 16182882
7. Lee HS, Kim Y, Park T. New Common and Rare Variants Influencing Metabolic Syndrome and Its Individual Components in a Korean Population. Sci Rep. 2018 Apr 9;8(1):5701. doi: 10.1038/s41598-018-23074-2 29632305
8. Maasz A, Kisfali P, Horvatovich K, Mohas M, Marko L, Csongei V, et al. Apolipoprotein A5 T-1131C variant confers risk for metabolic syndrome. Pathol Oncol Res. 2007;13(3):243–7. doi: 10.1007/bf02893505 17922054
9. Melegh BI, Duga B, Sumegi K, Kisfali P, Maasz A, Komlosi K, et al. Mutations of the apolipoprotein A5 gene with inherited hypertriglyceridaemia: review of the current literature. Curr Med Chem. 2012;19(36):6163–70 23150946
10. Takeuchi F, Isono M, Katsuya T, Yokota M, Yamamoto K, Nabika T, et al. Association of genetic variants influencing lipid levels with coronary artery disease in Japanese individuals. Plos One. 2012;7(9):e46385. doi: 10.1371/journal.pone.0046385 23050023
11. Ye HD, Zhou AN, Hong QX, Tang LL, Xu XT, Xin YF, et al. Positive Association between APOA5 rs662799 Polymorphism and Coronary Heart Disease: A Case-Control Study and Meta-Analysis. Plos One. 2015;10(8).
12. Song KH, Cha S, Yu SG, Yu H, Oh SA, Kang NS. Association of apolipoprotein A5 gene -1131T>C polymorphism with the risk of metabolic syndrome in Korean subjects. Biomed Res Int. 2013;2013:585134. doi: 10.1155/2013/585134 23509746
13. Son KY, Son HY, Chae J, Hwang J, Jang S, Yun JM, et al. Genetic association of APOA5 and APOE with metabolic syndrome and their interaction with health-related behavior in Korean men. Lipids Health Dis. 2015;14.
14. Caussy C, Charriere S, Marcais C, Di Filippo M, Sassolas A, Delay M, et al. An APOA5 3 ' UTR Variant Associated with Plasma Triglycerides Triggers APOA5 Downregulation by Creating a Functional miR-485-5p Binding Site. Am J Hum Genet. 2014;94(1):129–34. doi: 10.1016/j.ajhg.2013.12.001 24387992
15. Kraja AT, Vaidya D, Pankow JS, Goodarzi MO, Assimes TL, Kullo IJ, et al. A Bivariate Genome-Wide Approach to Metabolic Syndrome STAMPEED Consortium. Diabetes. 2011;60(4):1329–39. doi: 10.2337/db10-1011 21386085
16. Shou WH, Wang Y, Xie F, Wang BL, Yang L, Wu H, et al. A functional polymorphism affecting the APOA5 gene expression is causally associated with plasma triglyceride levels conferring coronary atherosclerosis risk in Han Chinese Population. Bba-Mol Basis Dis. 2014;1842(11):2147–54.
17. Liu ZK, Hu M, Baum L, Thomas GN, Tomlinson B. Associations of polymorphisms in the apolipoprotein A1/C3/A4/A5 gene cluster with familial combined hyperlipidaemia in Hong Kong Chinese. Atherosclerosis. 2010;208(2):427–32. doi: 10.1016/j.atherosclerosis.2009.08.013 19732897
18. Moon S, Kim YJ, Han S, Hwang MY, Shin DM, Park MY, et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci Rep. 2019;9(1):1382. doi: 10.1038/s41598-018-37832-9 30718733
19. Galcheva-Gargova Z, Gangwani L, Konstantinov KN, Mikrut M, Theroux SJ, Enoch T, et al. The cytoplasmic zinc finger protein ZPR1 accumulates in the nucleolus of proliferating cells. Mol Biol Cell. 1998;9(10):2963–71. doi: 10.1091/mbc.9.10.2963 9763455
20. Corton JC, Anderson SP, Stauber A. Central role of peroxisome proliferator-activated receptors in the actions of peroxisome proliferators. Annu Rev Pharmacol Toxicol. 2000;40:491–518. doi: 10.1146/annurev.pharmtox.40.1.491 10836145
21. Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, et al. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res. 2009;37(1):129–43. doi: 10.1093/nar/gkn894 19033360
22. Johansen CT, Wang JA, Lanktree MB, Cao HN, McIntyre AD, Ban MR, et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat Genet. 2010;42(8):684–U59. doi: 10.1038/ng.628 20657596
23. Nakayama K, Yanagisawa Y, Ogawa A, Ishizuka Y, Munkhtulga L, Charupoonphol P, et al. High prevalence of an anti-hypertriglyceridemic variant of the MLXIPL gene in Central Asia. J Hum Genet. 2011;56(12):828–33. doi: 10.1038/jhg.2011.109 21938000
24. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43(10):990–5. doi: 10.1038/ng.939 21909109
25. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R, et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet. 2008;40(2):161–9. doi: 10.1038/ng.76 18193043
26. Vaxillaire M, Cavalcanti-Proenca C, Dechaume A, Tichet J, Marre M, Balkau B, et al. The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes. 2008;57(8):2253–7. doi: 10.2337/db07-1807 18556336
27. Perez-Martinez P, Delgado-Lista J, Garcia-Rios A, Mc Monagle J, Gulseth HL, Ordovas JM, et al. Glucokinase regulatory protein genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome. Plos One. 2011;6(6):e20555. doi: 10.1371/journal.pone.0020555 21674002
28. Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol. 2010;30(11):2264–76. doi: 10.1161/ATVBAHA.109.201020 20864672
29. Lu X, Huang J, Mo Z, He J, Wang L, Yang X, et al. Genetic Susceptibility to Lipid Levels and Lipid Change Over Time and Risk of Incident Hyperlipidemia in Chinese Populations. Circ Cardiovasc Genet. 2016;9(1):37–44. doi: 10.1161/CIRCGENETICS.115.001096 26582766
30. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y, et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42(3):210–5. doi: 10.1038/ng.531 20139978
31. Shen Y, Wu LJ, Xi B, Liu X, Zhao XY, Cheng H, et al. GCKR Variants Increase Triglycerides While Protecting from Insulin Resistance in Chinese Children. Plos One. 2013;8(1).
32. Spracklen CN, Chen P, Kim YJ, Wang X, Cai H, Li SX, et al. Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum Mol Genet. 2017;26(9):1770–84. doi: 10.1093/hmg/ddx062 28334899
33. Lee HJ, Jang HB, Kim HJ, Ahn Y, Hong KW, Cho SB, et al. The dietary monounsaturated to saturated fatty acid ratio modulates the genetic effects of GCKR on serum lipid levels in children. Clin Chim Acta. 2015;450:155–61. doi: 10.1016/j.cca.2015.08.012 26291577
34. Kim M, Kim M, Huang L, Jee SH, Lee JH. Genetic risk score of common genetic variants for impaired fasting glucose and newly diagnosed type 2 diabetes influences oxidative stress. Sci Rep. 2018;8(1):7828. doi: 10.1038/s41598-018-26106-z 29777116
35. El Kares R, Manolescu DC, Lakhal-Chaieb L, Montpetit A, Zhang Z, Bhat PV, et al. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int. 2010 Jul;78(1):96–102 20375987
36. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, et al. Large-scale genome-wide association studies in east Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43(10):990–U102. doi: 10.1038/ng.939 21909109
37. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet. 2009;41(1):56–65. doi: 10.1038/ng.291 19060906
38. Liu Y, Zhou D, Zhang Z, Song Y, Zhang D, Zhao T, et al. Effects of genetic variants on lipid parameters and dyslipidemia in a Chinese population. J Lipid Res. 2011;52(2):354–60. doi: 10.1194/jlr.P007476 21149302
39. Liu SJ, Zhi H, Chen PZ, Chen W, Lu F, Ma GS, et al. Fatty acid desaturase 1 polymorphisms are associated with coronary heart disease in a Chinese population. Chin Med J (Engl). 2012;125(5):801–6.
40. Ordovas JM, Cupples LA, Corella D, Otvos JD, Osgood D, Martinez A, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol. 2000;20(5):1323–9. doi: 10.1161/01.atv.20.5.1323 10807749
41. Kurano M, Tsukamoto K, Kamitsuji S, Kamatani N, Hara M, Ishikawa T, et al. Genome-wide association study of serum lipids confirms previously reported associations as well as new associations of common SNPs within PCSK7 gene with triglyceride. J Hum Genet. 2016;61(5):427–33. doi: 10.1038/jhg.2015.170 26763881
42. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M, et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018 Mar;50(3):390–400. doi: 10.1038/s41588-018-0047-6 29403010
43. Wang J, Wang LJ, Zhong Y, Gu P, Shao JQ, Jiang SS, et al. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis. 2013;12.
44. Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G, et al. Variants in MTNR1B influence fasting glucose levels. Nat Genet. 2009;41(1):77–81. doi: 10.1038/ng.290 19060907
45. Go MJ, Hwang JY, Kim YJ, Oh JH, Kim YJ, Kwak SH, et al. New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J Hum Genet. 2013;58(6):362–5. doi: 10.1038/jhg.2013.14 23575436
46. Kwak SH, Kim SH, Cho YM, Go MJ, Cho YS, Choi SH, et al. A genome-wide association study of gestational diabetes mellitus in Korean women. Diabetes. 2012;61(2):531–41. doi: 10.2337/db11-1034 22233651
47. Kim JY, Cheong HS, Park BL, Baik SH, Park S, Lee SW, et al. Melatonin receptor 1 B polymorphisms associated with the risk of gestational diabetes mellitus. BMC Med Genet. 2011;12:82. doi: 10.1186/1471-2350-12-82 21658282
48. Park YM, Kwock CK, Kim K, Kim J, Yang YJ. Interaction between Single Nucleotide Polymorphism and Urinary Sodium, Potassium, and Sodium-Potassium Ratio on the Risk of Hypertension in Korean Adults. Nutrients. 2017;9(3).
49. Kim SJ, Lee SK, Kim SH, Yun CH, Kim JH, Thomas RJ, et al. Genetic association of short sleep duration with hypertension incidence—a 6-year follow-up in the Korean genome and epidemiology study. Circ J. 2012;76(4):907–13. doi: 10.1253/circj.cj-11-0713 22322875
50. Lim JE, Kim HO, Rhee SY, Kim MK, Kim YJ, Oh B. Gene-environment interactions related to blood pressure traits in two community-based Korean cohorts. Genet Epidemiol. 2019 Feb 15. [Epub ahead of print]
51. Jeong SW, Chung M, Park SJ, Cho SB, Hong KW. Genome-wide association study of metabolic syndrome in koreans. Genomics Inform. 2014;12(4):187–94. doi: 10.5808/GI.2014.12.4.187 25705157
52. Coram MA, Duan Q, Hoffmann TJ, Thornton T, Knowles JW, Johnson NA, et al. Genome-wide characterization of shared and distinct genetic components that influence blood lipid levels in ethnically diverse human populations. Am J Hum Genet. 2013 Jun 6;92(6):904–16. doi: 10.1016/j.ajhg.2013.04.025 23726366
53. Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M, et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet. 2008 Jan;82(1):139–49. doi: 10.1016/j.ajhg.2007.11.001 18179892
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy