From seed to flour: Sowing sustainability in the use of cantaloupe melon residue (Cucumis melo L. var. reticulatus)
Autoři:
Josiane Araújo da Cunha aff001; Priscilla Moura Rolim aff002; Karla Suzanne Florentino da Silva Chaves Damasceno aff001; Francisco Canindé de Sousa Júnior aff001; Roseane Claro Nabas aff002; Larissa Mont’Alverne Jucá Seabra aff001
Působiště autorů:
Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
aff001; Nutrition Department, Federal University of Rio Grande do Norte, Natal, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0219229
Souhrn
Reduction of waste from food industry and food services is a current concern due to the large amount of waste generated, including peels and fruit seeds. The objective of this study was to obtain a flour produced from Cantaloupe melon seeds (Cucumis melo L. var. reticulatus) and to evaluate the viability of using the product as an ingredient in cake manufacturing. In this study, different formulations were developed: standard cake—0% (F1) and cakes containing melon seed flour as substitute of wheat flour in 10% (F2), 30% (F3), and 50% (F4) concentrations. Centesimal composition, dietary fibre, structural and morphological characterization, determination of mineral composition, and evaluation of fatty acids profile in melon seed flour were carried out. To determine the overall acceptance of cake formulations, sensory analysis was performed with 135 non-trained panelists, which also included the identification of sensorial attributes using the Just About Right ideal scale test. The results showed that the melon seed flour has considerable nutritional value, with 18% proteins, 3% moisture, 4% ash, 30% lipids, and 35% dietary fibre. Melon flour also has a significantly high content of minerals, mainly phosphorus (1507.62 mg/100 g), potassium (957.35 mg/100 g), and magnesium (504.03 mg/100 g). The polyunsaturated fatty acid fraction was the most abundant in melon seed flour, with predominance of omega-6 fatty acids (17.95 g/mg of sample). Sensorial analysis disclosed good acceptance for formulations containing 10% and 30% of melon seed flour, with the 10% formulation being the most accepted. The research showed the feasibility of using the melon seed flour in cake production, as well as the possibility of using food waste in restaurants and food industries in order to adhere to sustainable production actions.
Klíčová slova:
Fatty acids – Flour – Lipids – Magnesium – Melons – Seeds – Wheat – Crystallization seeding
Zdroje
1. Silva MA, Albuquerque TG, Alves RC, Oliveira MBPP, Costa HS. Melon (Cucumis melo L.) by-products: potential food ingredients for novel functional foods? Trends Food Sci. Technol. 2018; 81: 61–73.
2. Cardoso FT, Fróes SC, Friede R, Moragas CJ, Miranda MG, Avelar KES. Aproveitamento integral de Alimentos e o seu impacto na Saúde. Sustentabilidade em Debate. 2015; 6(3):131–143.
3. Abiad MG, Meho LI. Food loss and food waste research in the Arab world: a systematic review. Food Secur. 2018; 10: 311–322.
4. Organização das Nações Unidas para Alimentação e Agricultura. Desperdício de alimentos tem consequências no clima, na água, na terra e na biodiversidade. 2013. http://www.fao.org.br/daccatb.asp (acessed 04 september 2017).
5. Strasburg VJ, Jahno VD. Paradigmas das práticas de gestão ambiental no segmento de produção de refeições no Brasil. Eng. Sanit. Ambient. 2017; 22(1): 3–12.
6. Silva JB, Schlabitz C, Souza CFV. Utilização Tecnológica de Semente de Abóbora na Elaboração de Biscoitos Fontes de Fibra Alimentar e sem Adição de Açúcar. RBTA. 2010; 4(1): 58–71.
7. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). A cultura do melão. 2008. 2. ed. ampl. Brasília (DF): Informação Tecnológica. 191 p.
8. Miguel ACA, Abertini S, Begiato GF; Dias JRPS, Spoto MHF. Aproveitamento agroindustrial de resíduos sólidos provenientes do melão minimamente processado. Food Sci. and Technol. 2008; 3(28).
9. Ebert AW. Potential of Underutilized Traditional Vegetables and Legume Crops to Contribute to Food and Nutritional Security, Income and More Sustainable Production Systems. ISSN: 2071-1050. Sustainability. 2014; 6: 319–335.
10. Rolim P. M.; Fidelis G. P.; Padilha C. E. A.; Santos E. S.; Rocha H. A. O.; Macedo G. R. Phenolic Profile, Antioxidant Activity from Peel and Seed of Melon (Cucumis Melo L. Var. Reticulatus) and Its Antiproliferative Effect in Cancer Cells. Braz. J. Med. Biol. Res. 2018; 51(4): 1–14.
11. Fundo JF, Miller FA, Garcia E, Santos JR, Silva CLM, Brandão TRS. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. Food Meas. 2018; 12: 292–300.
12. Olubunmi IP, Olajumoke AA, Bamidele JA, Omolara OF. Phytochemical Composition and in vitro Antioxidant Activity of Golden Melon (Cucumis melo L.) Seeds for Functional Food Application. Int. J. Biochem. Res. & Rev. 2019; 25 (2): 1–13.
13. Singh J, Kumar R, Awasthi S, Singh V, Rai AK. Laser Induced breakdown spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds. Food Chem. 2017; 221: 1778–1783. doi: 10.1016/j.foodchem.2016.10.104 27979160
14. Bouazzaoui N, Drici W, Bouazzaoui W, Lemerini W, Arrar Z, Bendiabdellah D, et al. Fatty acids and mineral composition of melon (Cucumis melo L. inodorus) seeds from West Algeria. Mediterranean J. Chem. 2016; 5(1), 340–346.
15. Oluwabamiwo F, Adegoke G, Denloye S, Akinoso R, Bruno D. Proximate composition and fatty acid profile of Nigerian melon seeds. Life Sci. Arch. (LSA). 2015; 1(1): 59–65.
16. Umar KJ, Hassan LG, Usman H, Wasagu RSU. Nutritional Composition of the Seeds of Wild Melon (Citrullus ecirrhosus). Pakistan J. Biol. Sci. 2013; 16(11): 536–540.
17. Franklin TA, Sena AS, Santana MLAA, Matos TB, Milagres MP. Segurança Alimentar, Nutricional e Sustentabilidade no Restaurante Universitário. Rev. Saúde.Com 2016; 12(1): 482–487. http://www.uesb.br/revista/rsc/ojs/index.php/rsc/article/view/332/359 (acessed 4 november 2017).
18. Gorgônio CMS, Pumar M, Mothé CG. Macrocospic and physiochemical characterization of a sugarless and gluten-free cake enriched with fibers made from pumpkin seed (Cucurbita maxima, L.) flour and cornstarch. Ciênc. Tecnol. Aliment. 2011; 31(1): 109–118.
19. Moura Rolim P, Oliveira Júnior SD, Oliveira ACSM, Santos ES, Macedo GR. Nutritional value, cellulase activity and prebiotic effect of melon residues (Cucumis melo L. reticulatus group) as a fermentative substrate. J. Food Nut. Res. 2018; 57(4), 315–327.
20. Brasil. Ministério da Saúde. Agência Nacional de Vigilância Sanitária–ANVISA. Métodos Físico-Químicos para Análise de Alimentos. 2005a. 1018 p.
21. Association of Official Analytical Chemistry (AOAC) Official Methods of Analysis of Association of Official Analytical Chemistry Internacional. 2002. 17ª edição. Capítulo 17. p. 173.
22. USEPA (United States Environmental Protection Agency). Inductively coupled plasma-atomic emission spectrometry. (2000). https://www.epa.gov/sites/production/files/2015-07/documents/epa-6010c.pdf./ Acessado 03 Fevereiro 2019.
23. Firestone D. (Ed.). Official methods and recommended practices of the American Oil Chemists Society. 2014. 6th ed., 3rd printing, Urbana: AOCS, Ce 1a-13 e Ce 1h-05.
24. Hartman L, Lago RCA. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973; 22(8); 494–495.
25. Dutcosky SD. Análise Sensorial de Alimentos. 2013. 4ª. Edição. Curitiba: Champagnat.
26. Jaeger SR, Hunter DC, Kam K, Beresford MK, Jin D, Paisley AG,et al. The concurrent use of JAR and CATA questions in hedonic scaling is unlikely to cause hedonic bias, but may increase product discrimination. Food Qual. Prefer. 2015; 44: 70–74.
27. Brasil. Agência Nacional de Vigilância Sanitária—ANVISA. Resolução—RDC nº 12, de 02 de janeiro de 2001. Aprova o Regulamento Técnico sobre Padrões Microbiológicos para Alimentos. Brasília, DF; 2001. http://portal.anvisa.gov.br/documents/33880/2568070/RDC_12_2001.pdf/15ffddf6-37674527-bfac-740a0400829b (accessed 04 March 2017).
28. Silva N, Junqueira VCC, Silveira NFA, Taniwaki MH, Santos RFS, Gomes RAR. Manual de métodos de análise microbiológica de alimentos e água. 4Ed. São Paulo: Livraria Varela, 2010.
29. Brasil. Ministério da Agricultura, Pecuária e abastecimento. Secretaria de defesa agropecuária. Capítulo I—Contagem padrão de microrganismos mesófilos aeróbios estritos e facultativos viáveis. Instrução Normativa nº 62, de 26 de agosto de 2003.
30. Food and Drug Administration (FDA). Bacteriological Analytical Manual. 7ed. Arlington:AOAC, International, 1992. 531p.
31. AOAC Research Institute International. Rapid Test Kits. Performance Tested Methods. 2005. Disponível em http://stakeholder.aoac.org/testkits/perftestedmtd.html.
32. Padilha VM, Rolim PM, Salgado SM, Livera AS, Andrade SAC, Guerra NB. Perfil sensorial de bolos de chocolate formulados com farinha de yacon (Smallanthus sonchifolius). Ciênc. Tecnol. Aliment. 2010; 30(3): 735–740.
33. Vieira RFFA Carvalho CLS, Carvalho IRA Candido CJ, Santos EF, Novello D. Adição de farinha da casca de melão em cupcakes altera a composição físico-química e a aceitabilidade entre crianças. Conexão Ci. 2017; 12(12): 22–30.
34. Brasil. Agência Nacional de Vigilância Sanitária—ANVISA. Resolução RDC n° 263, de 22 de setembro de 2005b. Aprova o "Regulamento Técnico para Produtos de Cereais, Amidos, Farinhas e Farelos". Brasília, DF. https://www.saude.rj.gov.br/comum/code/MostrarArquivo.php?C=MjIwMw%2C%2C (accessed 30 May 2018).
35. Araújo KTA, Silva RM, Silva RC, Figueirêdo RMF, Queiroz AJM. Caracterização físico-química de farinhas de frutas tropicais. Rev. Bras. Agrotecnol. 2017; 7(2): 110–115.
36. Malacrida CR, Angelo PM, Andreo D, Jorge N. Composição química e potencial antioxidante de extratos de sementes de melão amarelo em óleo de soja. Rev. Ciên. Agron. 2007; 38(4): 372–376.
37. Petkova Z, Antova G. Proximate Composition of seeds and seed oils from melon (Cucumis melo L.) cultivated in Bulgaria. Food Science & Technology. J. Cogent Food Agric. 2015; 1(1): 1018779.
38. Mehra M, Pasricha V, Gupta RK. Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and water melon (Citrullus lanatus) and nutritional analysis of their respective oils. J. Pharmacogn. Phytochem. 2015; 3(6): 98–102.
39. Brasil. Agência Nacional de Vigilância Sanitária—ANVISA. Resolução RDC n° 54, de 12 de novembro de 2012. Dispõe sobre o Regulamento Técnico sobre Informação Nutricional Complementar. Brasília, DF: 2012. http://portal.anvisa.gov.br/documents/%2033880/2568070/rdc0054_12_11_2012.pdf/c5ac23fd-974e-4f2c-9fbc-48f7e0a31864 (accessed 30 May 2018).
40. Morais DR, Rotta EM, Sargi SC, Bonafe EG, Suzuki RM, Souza NE, et al. Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. J. Braz. Chem. Soc. 2017; 28(2), 308–318.
41. Dietary Reference Intakes for Energy, Carbohydrate. Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. 2002. Journal of the Academy of Nutrition and Dietetics. 2002; 102(11): 1621–1630.
42. Pimentel JGR, Herrera A, Mancilla CLA, Prieto JC, Fuente GI, Pérez JCR. Caracterización de las proteínas de reserva y contenido mineral de semilla de melón (Cucumis melo L.). Rev. Mex. de Cienc. Agríc. 2016; 7(7): 1667–1678.
43. Azhari S, Xu YS, Jiang QX, Xia WS. Physicochemical properties and chemical composition of Seinat (Cucumis melo Var. tibish) seed oil and its antioxidant activity. Grasas Aceites. 2014; 65 (1).
44. Mallek-Ayadi S, Bahloul N, Kechaou N. Chemical composition and bioactive compounds of Cucumis melo L. seeds: Potential source for new trends of plant oils. Process Saf. Environ. Prot. 2018; 113: 68–77.
45. Sociedade Brasileira de Cardiologia. Arquivos Brasileiros de Cardiologia—Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose. Rev. Soc. Bras. Cardiol. 2017; 109(2), supl. 1. 91p.
46. Rudel LL, Kelly K, Sawyer JK, Shah R, Wilson MD. Dietary monounsaturated fatty acids promote aorti atherosclerosis in LDL receptor-null ApoB100-overexpressing transgenic mice. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1818–1827. doi: 10.1161/01.atv.18.11.1818 9812923
47. Oomah DB, Ladet S, Godfrey VD, Liang J, Giarard B. Characteristics of rasberry (Rubus idaeus L.) seed oil. Food Chem. 2000; 69: 187–193.
48. Oliveira JG, Bressan-Smith RE, Campostrini E, Cunha M, Costa ES, Torres Netto A, et al. Vitória AP. Geleificação da polpa de mamão: amadurecimento prematuro ou problemas no acúmulo de água no apoplasto? Rev. Bras. Frutic. 2010; 32 (4): 961–969.
49. Ye J, Hua X, Luoa S, McClementsb DJ, Lianga L, Liua C. Effect of endogenous proteins and lipids on starch digestibility in rice flour. Food Res. Int. 2018; 106: 404–409. doi: 10.1016/j.foodres.2018.01.008 29579941
50. Pumar M, Freitas MCJ, Cerqueira PM, Santangelo SB. Avaliação do efeito fisiológico da farinha de semente de abóbora (Cucurbita maxima, L.) no trato intestinal de ratos. Ciênc. Tecnol. Aliment. 2008; 28(0):7–13.
51. Valcárcel-Yamani B, Lannes SCS. Applications of Quinoa (Chenopodium Quinoa Willd.) and Amaranth (Amaranthus Spp.) and Their Influence in the Nutritional Value of Cereal Based Foods. Food Public Health. 2012; 2(6): 265–275.
52. Lago AMT, Vidal ACC, Schiassi MCEV, Reis T, Pimenta C, Pimenta ESG. Influence of the Addition of Minced Fish on the Preparation of Fish Sausage Effects on Sensory Properties. J. Food Sci. 2017; 82 (2): 492–499. doi: 10.1111/1750-3841.13586 28135398
53. Abelama VD, Bezerra PQM, Matos MFR. Aproveitamento da semente de jaca no Brasil: uma revisão integrativa sobre a utilização em preparações gastronômicas. Cont. Alim. Rev. Comportam. Cult. Soc. 2017; 5(2): 71–82.
54. Oliveira DM, Marques DR, Kwiatkowski A, Monteiro ARG, Clemente E. Sensory analysis and chemical characterization of cereal enriched with grape peel and seed flour. Acta Sci. Technol. 2013; 35(3): 427–431.
55. Bender ABB, Luvielmo MM, Loureiro BB, Speroni CS, Boligon AA, Silva LP,et al. Obtenção e caracterização de farinha de casca de uva e sua utilização em snack extrusado. Braz. J. Food Technol. 2016; 19, e2016010.
56. Storck CR, Nunes GL, Oliveira BB, Basso CL. Leaves, Stalk, Pell and Seeds of Vegetables: Nutritional Composition, Utilization and Sensory Analysis in Food Preparations. Sci. Rural. 2013, 43(3), 537–543.
57. Hampson CR, Stanich K, McKenzie D, Herbert L, Lu Ran, Li J, et al. Determining the optimum firmness for sweet cherries using Just-About-Right sensory methodology. Postharvest Biol Technol. 2014; 91, 104–111.
58. Guimarães RR, Freitas MCJ, Silva VLM. Bolos simples elaborados com farinha da entrecasca de melancia (Citrullus vulgaris, sobral): avaliação química, fisica e sensorial. Ciênc. Technol. Aliment. 2010; 30(2): 354–363.
59. Spada FP, Silva PPM, Mandro GF, Margiotta GB, Spoto MHF, Brazaca SGC. Physicochemical characteristics and high sensory acceptability in cappuccinos made with jackfruit seeds replacing cocoa poder. PLOS ONE. 2018; 13(8).
60. Conrad Z, Niles MT, Neher DA, Roy ED, Tichenor NE, Jahns L. Relationship between food waste, diet quality, and environmental sustainability. PLOS ONE. 2018; 13(4).
61. Tabela brasileira de composição de alimentos. 2011. 4. ed. rev. e ampl. Campinas: NEPA- UNICAMP. 161 p.
62. Rolim PM, Seabra LMJ, Macedo GR. Melon By-Products: Biopotential in Human Health and Food Processing. Food Rev. Int. 2019; 1525–6103 (Online) Journal homepage: https://www.tandfonline.com/loi/lfri20.
63. Mallek-Ayadi S, Bahloul N, Kechaou N. Phytochemical profile, nutraceutical potential and functional properties of Cucumis melo L. Seeds. J. Sci. Food Agric. 2019; 99: 1294–1301. doi: 10.1002/jsfa.9304 30094840
64. Schanes K, Dobernig K, Gözet B. Food waste matters—A systematic review of household food waste practices and their policy implications. J. Clean. Prod 2018; 182 (1): 978–991.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy