#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The dynamics of shapes of vesicle membranes with time dependent spontaneous curvature


Autoři: R. A. Barrio aff001;  Tomas Alarcon aff002;  A. Hernandez-Machado aff003
Působiště autorů: Instituto de Física, U.N.A.M., Apartado Postal 20-364, 01000 Mexico D.F., Mexico aff001;  ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain aff002;  Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain aff003;  Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain aff004;  Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain aff005;  Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain aff006;  Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Barcelona, Spain aff007
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227562

Souhrn

We study the time evolution of the shape of a vesicle membrane under time-dependent spontaneous curvature by means of phase-field model. We introduce the variation in time of the spontaneous curvature via a second field which represents the concentration of a substance that anchors with the lipid bilayer thus changing the local curvature and producing constriction. This constriction is mediated by the action on the membrane of an structure resembling the role of a Z ring. Our phase-field model is able to reproduce a number of different shapes that have been experimentally observed. Different shapes are associated with different constraints imposed upon the model regarding conservation of membrane area. In particular, we show that if area is conserved our model reproduces the so-called L-form shape. By contrast, if the area of the membrane is allowed to grow, our model reproduces the formation of a septum in the vicinity of the constriction. Furthermore, we propose a new term in the free energy which allows the membrane to evolve towards eventual pinching.

Klíčová slova:

Bending – Deformation – Free energy – Liposomes – Membrane proteins – Nonlinear dynamics – Surface tension – Vesicles


Zdroje

1. Osawa M, Anderson DE, Erickson HP. Reconstitution of Contractile FtsZ Rings in Liposomes. Science. 2008;320(5877):792–794. doi: 10.1126/science.1154520 18420899

2. Erickson HP, Anderson DE, Osawa M. FtsZ in Bacterial Cytokinesis: Cytoskeleton and Force Generator All in One. Microbiology and Molecular Biology Reviews. 2010;74(4):504–528. doi: 10.1128/MMBR.00021-10 21119015

3. Osawa M, Erickson HP. Inside-out Z rings constriction with and without GTP hydrolysis. Molecular Microbiology. 2011;81(2):571–579. doi: 10.1111/j.1365-2958.2011.07716.x 21631604

4. Osawa M, Erickson HP. Liposome division by a simple bacteria division machinery. Proc Natl Acad Sci. 2013;110:11000–11004. doi: 10.1073/pnas.1222254110 23776220

5. Ghosh B, Sain A. Origin of Contractile Force during Cell Division of Bacteria. Phys Rev Lett. 2008;101:178101. doi: 10.1103/PhysRevLett.101.178101 18999788

6. Allard JF, Cytrynbaum EN. Force generation by a dynamic Z-ring in Escherichia coli cell division. Proc Nat Acad Sci. 2009;106(1):145–150. doi: 10.1073/pnas.0808657106 19114664

7. Lan G, Daniels BR, Dobrowsky TM, Wirtz D, Sun SX. Condensation of FtsZ filaments can drive bacterial cell division. Proc Nat Acad Sci. 2009;106(1):121–126. doi: 10.1073/pnas.0807963106 19116281

8. Shlomovitz R, Gov NS. Membrane-mediated interactions drive the condensation and coalescence of FtsZ. Phys Biol. 2009;6:046017. doi: 10.1088/1478-3975/6/4/046017 19934492

9. Hörger I, Velasco E, Mingorance J, Rivas G, Tarazona P, Vélez M. Langevin computer simulations of bacterial protein filaments and the force-generating mechanism during cell division. Phys Rev E. 2008;77:011902. doi: 10.1103/PhysRevE.77.011902

10. Hörger I, Velasco E, Rivas G, Vélez M, Tarazona P. FtsZ Bacterial Cytoskeletal Polymers on Curved Surfaces: The Importance of Lateral Interactions. Biophys J. 2008;94:L81. doi: 10.1529/biophysj.107.128363 18359798

11. Hörger I, Campelo F, Hernández-Machado A, Tarazona P. Constricting force of filamentary protein rings evaluated from experimental results. Phys Rev E. 2010;81(3):031922. doi: 10.1103/PhysRevE.81.031922

12. Cytrynbaum EN, Li YD, Allard JF, Mehrabian H. Estimating the bending modulus of a FtsZ bacterial-division protein filament. Phys Rev E. 2012;85:011902. doi: 10.1103/PhysRevE.85.011902

13. Fischer-Friedrich E, Gov N. Modeling FtsZ ring formation in the bacterial cell anisotropic aggregation via mutual interactions of polymer rods. Physical Biology. 2011;8(2):026007. doi: 10.1088/1478-3975/8/2/026007 21335646

14. Allard JF, Rutenberg AD. Pulling helices inside bacteria: Imperfect helices and rings. Phys Rev Lett. 2009;102:158105. doi: 10.1103/PhysRevLett.102.158105 19518677

15. Benetatos P, Terentjev EM. Stretching weakly bending filaments with spontaneous curvature in two dimensions. Phys Rev E. 2010;81:031802. doi: 10.1103/PhysRevE.81.031802

16. Ghosh B, Sain A. Force generation in bacteria without nucleotide-dependent bending of cytoskeletal fliaments. Phys Rev E. 2011;83:051924. doi: 10.1103/PhysRevE.83.051924

17. McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature. 2005;438:590–596. doi: 10.1038/nature04396 16319878

18. Picallo CB, Barrio RA, Varea C, Alarcon T, Hernandez-Machado A. Phase-field modelling of the dynamics of Z-ring formation in liposomes: Onset of constriction and coarsening. Eur Phys J E. 2015;38:61–270. doi: 10.1140/epje/i2015-15061-0 26105960

19. Campelo F, Hernandez-Machado A. Eur Phys J E. 2006;20:37.

20. Campelo F, Hernandez-Machado A. Shape instabilities in vesicles: A phase-field model. Eur Phys J Special Topics. 2007;143:101. doi: 10.1140/epjst/e2007-00077-y

21. Campelo F, Hernández-Machado A. Model for Curvature-Driven Pearling Instability in Membranes. Phys Rev Lett. 2007;99(8):088101. doi: 10.1103/PhysRevLett.99.088101 17930984

22. Liu Z, Guo K. Coupling FtsZ filaments and morphodynamics during bacterial cell division. RSC Advances. 2014;4:56665–56676. doi: 10.1039/C4RA11129J

23. Helfrich W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z Naturforsch C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209 4273690

24. Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol. 2005;6:862–871. doi: 10.1038/nrm1745 16227976

25. Varea C, Barrio RA, Hernandez-Machado A. Curvature multiphase field model for phase separation on a membrane. Phys Rev E. 2011;84:061922. doi: 10.1103/PhysRevE.84.061922

26. Erickson HP, Osawa M. Cell division without FtsZ–a variety of redundant mechanisms. Mol Microbiol. 2010;78:267–270. doi: 10.1111/j.1365-2958.2010.07321.x 20979330

27. Campelo F. PhD Thesis. Barcelona, Spain: Universitat de Barcelona; 2008.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#