#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A rainwater control optimization design approach for airports based on a self-organizing feature map neural network model


Autoři: Dongwei Qiu aff001;  Hao Xu aff001;  Dean Luo aff001;  Qing Ye aff002;  Shaofu Li aff001;  Tong Wang aff001;  Keliang Ding aff001
Působiště autorů: School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing, P.R. China aff001;  School of Humanity and Law, Beijing University of Civil Engineering and Architecture, Beijing, P.R. China aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227901

Souhrn

To address the problems of high overflow rate of pipe network inspection well and low drainage efficiency, a rainwater control optimization design approach based on a self-organizing feature map neural network model (SOFM) was proposed in this paper. These problems are caused by low precision parameter design in various rainwater control measures such as the diameter of the rainwater pipe network and the green roof area ratio. This system is to be combined with the newly built rainwater pipe control optimization design project of China International Airport in Daxing District of Beijing, China. Through the optimization adjustment of the pipe network parameters such as the diameter of the rainwater pipe network, the slope of the pipeline, and the green infrastructure (GI) parameters such as the sinking green area and the green roof area, reasonable control of airport rainfall and the construction of sustainable drainage systems can be achieved. This research indicates that compared with the result of the drainage design under the initial value of the parameter, the green roof model and the conceptual model of the mesoscale sustainable drainage system, in the case of a hundred-year torrential rainstorm, the overflow rate of pipe network inspection wells has reduced by 36% to 67.5%, the efficiency of drainage has increased by 26.3% to 61.7%, which achieves the requirements for reasonable control of airport rainwater and building a sponge airport and a sustainable drainage system.

Klíčová slova:

Airports – Flooding – Mathematical functions – Neural networks – Neurons – Rain – Simulation and modeling – Storms


Zdroje

1. Wang S, Zhang W, Chen F. Simulation of Drainage Capacity in a Coastal Nuclear Power Plant under Extreme Rainfall and Tropical Storm [J]. Sustainability.2019;11(3): 642. doi: 10.3390/su11030642

2. HR Wallingford. Drogheda Sewer Network Improvement Scheme[R]. Ireland: 2010.

3. Manocha N, Babovic V. Real options, multi-objective optimization and the development of dynamically robust adaptive pathways [J]. Environmental science & policy 2018; 90; 11–18. doi: 10.1016/j.envsci.2018.09.012

4. Yazdi J. Improving Urban Drainage Systems Resiliency against Unexpected Blockages: A Probabilistic Approach [J]. Water resources control. 2018; 32(14); 4561–4573. doi: 10.1007/s11269-018-2069-3

5. Deitch M J, Feirer S T. Cumulative impacts of residential rainwater harvesting on stormwater discharge through a peri-urban drainage network[J]. Journal of environmental control, 2019, 243: 127–136. doi: 10.1016/j.jenvman.2019.05.018 31096167

6. Mora-Melià D., López-Aburto C., Ballesteros-Pérez P., & Muñoz-Velasco P. Viability of green roofs as a flood mitigation element in the central region of Chile[J]. Sustainability.2018; 10(4): 1130 doi: 10.3390/su10041130

7. Yazdi J. Rehabilitation of urban drainage systems using a resilience-based approach [J]. Water resources management.2018; 32(2); 721–734. doi: 10.1007/s11269-017-1835-y

8. Ashley R., Gersonius B., Digman C., Horton B., Smith B., & Shaffer P. Including uncertainty in valuing blue and green infrastructure for stormwater management[J]. Ecosystem services, 2018; 33: 237–246. doi: 10.1016/j.ecoser.2018.08.011

9. Peng Z., Jinyan K., Wenbin P., Xin Z., & Yuanbin C. Effects of Low-Impact Development on Urban Rainfall Runoff under Different Rainfall Characteristics [J]. Polish Journal of Environmental Studies.2019; 28(2); 771–783. doi: 10.15244/pjoes/85348

10. Zischg J., Rogers B., Gunn A., Rauch W., & Sitzenfrei R. Future trajectories of urban drainage systems: A simple exploratory modeling approach for assessing socio-technical transitions [J]. Science of The Total Environment, 2019; 651: 1709–1719. doi: 10.1016/j.scitotenv.2018.10.061 30316089

11. Haghighatafshar S., la Cour Jansen J., Aspegren H., & Jönsson K. Conceptualization and Schematization of Mesoscale Sustainable Drainage Systems: A Full-Scale Study[J]. Water, 2018; 10(8): 1041. doi: 10.3390/w10081041

12. Palumbo A., Cimorelli L., Covelli C., Cozzolino L., Mucherino C., & Pianese D. Optimal design of urban drainage network [J]. Civil Engineering and Environmental Systems 2014; 31(1); 79–96. doi: 10.1080/10286608.2013.820277

13. Kim H I, Keum H J, Han K Y. Real-Time Urban Inundation Prediction Combining Hydraulic and Probabilistic Methods [J]. Water.2019;11(2);293. doi: 10.3390/w11020293

14. Guo J., Liu Y., Zhang L., & Wang Y. Driving behaviour style study with a hybrid deep learning framework based on GPS data[J]. Sustainability, 2018, 10(7): 2351. doi: 10.3390/su10072351

15. Meng-ge Y., Xiao-zhou D., Ying L., Ying Z., & Yun-feng B. Classification of Geological Samples with Laser-Induced Breakdown Spectroscopy Based on Self-Organizing Feature Map Network and Correlation Discrimination Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(6): 1874–1879. doi: 10.3964/j.issn.1000-0593(2018)06-1874-06

16. Wu M. C., Hong J. S., Hsiao L. F., Hsu L. H., & Wang C. J. Effective use of ensemble numerical weather predictions in Taiwan by means of a SOM-based cluster analysis technique[J]. Water, 2017, 9(11): 836. doi: 10.3390/w9110836

17. Shao D, Liu G. Up-to-date urban rainstorm intensity formulas considering spatial diversity in China[J]. Environmental earth sciences, 2018, 77(14): 541. doi: 10.1007/s12665-018-7718-6

18. Yang Y, Chui T F M. Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management [J]. Journal of environmental management, 2018, 206: 1090–1103. doi: 10.1016/j.jenvman.2017.11.064 30029343

19. Xiong L. Y., Jiang R. Q., Lu Q. H., Yang B. S., Li F. Y., & Tang G. A. Improved Priority‐Flood method for depression filling by redundant calculation optimization in local micro‐relief areas[J]. Transactions in GIS, 2019, 23(2): 259–274. doi: 10.1111/tgis.12516

20. Zhang H., Yao Z., Yang Q., Li S., Baartman J. E., Gai L. & Geissen V. An integrated algorithm to evaluate flow direction and flow accumulation in flat regions of hydrologically corrected DEMs [J]. Catena. 2017; 151; 174–181. doi: 10.1016/j.catena.2016.12.009

21. Wu M., Shi P., Chen A., Shen C., & Wang P. Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT [J]. Water SA 2017; 3(3); 450–462. doi: 10.4314/wsa.v43i3.10

22. López‐Vicente M, Nadal‐Romero E, Cammeraat E L H. Cammeraat. Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees [J]. Land degradation & development. 2017; 28(4); 1298–1310. doi: 10.1002/ldr.2531

23. Martínez C., Sanchez A., Toloh B., & Vojinovic Z. Multi-objective evaluation of urban drainage networks using a 1D/2D flood inundation model [J]. Water resources management. 2018; 32(13); 4329–4343. doi: 10.1007/s11269-018-2054-x

24. Martínez-Solano F., Iglesias-Rey P., Saldarriaga J., & Vallejo D. Creation of an SWMM toolkit for its application in urban drainage networks optimization [J].Water (Switzerland).2016; 8(6); 259. doi: 10.3390/w8060259

25. Eaton T T. Approach and case-study of green infrastructure screening analysis for urban stormwater control [J]. Journal of environmental management, 2018, 209: 495–504. doi: 10.1016/j.jenvman.2017.12.068 29316470

26. Schubert J. E., Burns M. J., Fletcher T. D., & Sanders B. F. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards[J]. Advances in Water Resources, 2017, 108: 55–68. doi: 10.1016/j.advwatres.2017.07.009

27. Zölch T., Henze L., Keilholz P., & Pauleit S. Regulating urban surface runoff through nature-based solutions–An assessment at the micro-scale [J]. Environmental research, 2017, 157: 135–144. doi: 10.1016/j.envres.2017.05.023 28558261

28. Cimorelli L., Morlando F., Cozzolino L., Covelli C., Della Morte R., & Pianese D. Optimal positioning and sizing of detention tanks within urban drainage networks [J]. Journal of Irrigation and Drainage Engineering. 2016; 142(1); 04015028. doi: 10.1061/(ASCE)IR.1943-4774.0000927


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#