The impact of body posture on intrinsic brain activity: The role of beta power at rest
Autoři:
Brunella Donno aff001; Daniele Migliorati aff001; Filippo Zappasodi aff001; Mauro Gianni Perrucci aff001; Marcello Costantini aff002
Působiště autorů:
Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti, Chieti, Italy
aff001; Institute for Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio” of Chieti, Chieti, Italy
aff002; Center for Biomedical Brain Imaging, University of Delaware, Newark, Delaware, United States of America
aff003; Department of Psychological, Health, and Territorial Sciences, 'G. d'Annunzio” University of Chieti-Pescara, Italy
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0218977
Souhrn
Tying the hands behind the back has detrimental effects on sensorimotor perceptual tasks. Here we provide evidence that beta band oscillatory activity in a resting state condition might play a crucial role in such detrimental effects. EEG activity at rest was measured from thirty young participants (mean age = 24.03) in two different body posture conditions. In one condition participants were required to keep their hands freely resting on the table. In the other condition, participants’ hands were tied behind their back. Increased beta power was observed in the left inferior frontal gyrus during the tied hands condition compared to the free hands condition. A control experiment ruled out alternative explanations for observed change in beta power, including muscle tension. Our findings provide new insights on how body postural manipulations impact on perceptual tasks and brain activity.
Klíčová slova:
Electroencephalography – Electrophysiology – Hands – Muscle contraction – Musculoskeletal system – Scalp – Sensory perception – Vision
Zdroje
1. Shapiro L. Embodied cognition: Routledge; 2010.
2. Rowlands M. The new science of the mind: From extended mind to embodied phenomenology: Mit Press; 2010.
3. Wilson RA, Foglia L. Embodied cognition. 2011.
4. Bonda E, Petrides M, Frey S, EvANs A. Neural correlates of mental transformations of the body-in-space. Proceedings of the National Academy of Sciences. 1995;92(24):11180–4.
5. Cohen RG, Rosenbaum DA. Prospective and retrospective effects in human motor control: planning grasps for object rotation and translation. Psychological Research. 2011;75(4):341–9. doi: 10.1007/s00426-010-0311-6 20941504
6. Ionta S, Perruchoud D, Draganski B, Blanke O. Body context and posture affect mental imagery of hands. PloS one. 2012;7(3):e34382. doi: 10.1371/journal.pone.0034382 22479618
7. Overney LS, Michel CM, Harris IM, Pegna AJ. Cerebral processes in mental transformations of body parts: recognition prior to rotation. Cognitive brain research. 2005;25(3):722–34. doi: 10.1016/j.cogbrainres.2005.09.024 16288855
8. Ionta S, Blanke O. Differential influence of hands posture on mental rotation of hands and feet in left and right handers. Experimental brain research. 2009;195(2):207–17. doi: 10.1007/s00221-009-1770-0 19326106
9. Lopez C, Bachofner C, Mercier M, Blanke O. Gravity and observer's body orientation influence the visual perception of human body postures. Journal of vision. 2009;9(5):1–.
10. Dijkstra K, Kaschak MP, Zwaan RA. Body posture facilitates retrieval of autobiographical memories. Cognition. 2007;102(1):139–49. doi: 10.1016/j.cognition.2005.12.009 16472550
11. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences. 2005;102(27):9673–8.
12. Thibault RT, Lifshitz M, Raz A. Body position alters human resting-state: Insights from multi-postural magnetoencephalography. Brain imaging and behavior. 2016;10(3):772–80. doi: 10.1007/s11682-015-9447-8 26409469
13. Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and clinical neurophysiology. 1979;46(2):138–46. doi: 10.1016/0013-4694(79)90063-4 86421
14. Herrmann CS, Munk MH, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends in cognitive sciences. 2004;8(8):347–55. doi: 10.1016/j.tics.2004.06.006 15335461
15. Martinovic J, Busch NA. High frequency oscillations as a correlate of visual perception. International Journal of Psychophysiology. 2011;79(1):32–8. doi: 10.1016/j.ijpsycho.2010.07.004 20654659
16. Tallon-Baudry C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front Biosci. 2009;14:321–32.
17. Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I. Distinct roles for alpha-and beta-band oscillations during mental simulation of goal-directed actions. Journal of Neuroscience. 2014;34(44):14783–92. doi: 10.1523/JNEUROSCI.2039-14.2014 25355230
18. Cheyne DO. MEG studies of sensorimotor rhythms: a review. Experimental neurology. 2013;245:27–39. doi: 10.1016/j.expneurol.2012.08.030 22981841
19. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends in neurosciences. 1997;20(1):44–9. doi: 10.1016/S0166-2236(96)10065-5 9004419
20. Jensen O, Goel P, Kopell N, Pohja M, Hari R, Ermentrout B. On the human sensorimotor-cortex beta rhythm: sources and modeling. Neuroimage. 2005;26(2):347–55. doi: 10.1016/j.neuroimage.2005.02.008 15907295
21. Natraj N, Poole V, Mizelle J, Flumini A, Borghi AM, Wheaton LA. Context and hand posture modulate the neural dynamics of tool–object perception. Neuropsychologia. 2013;51(3):506–19. doi: 10.1016/j.neuropsychologia.2012.12.003 23261936
22. Zimmermann M, Toni I, de Lange FP. Body posture modulates action perception. Journal of Neuroscience. 2013;33(14):5930–8. doi: 10.1523/JNEUROSCI.5570-12.2013 23554475
23. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009 15102499
24. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural networks. 2000;13(4–5):411–30. doi: 10.1016/s0893-6080(00)00026-5 10946390
25. Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: spectral and topographical characteristics. Clinical neurophysiology. 2003;114(9):1580–93. doi: 10.1016/s1388-2457(03)00093-2 12948787
26. Zakeri Z, Assecondi S, Bagshaw A, Arvanitis T, editors. Influence of signal preprocessing on ICA-based EEG decomposition. XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013; 2014: Springer.
27. Fell J, Widman G, Rehberg B, Elger CE, Fernandez G. Human mediotemporal EEG characteristics during propofol anesthesia. Biological cybernetics. 2005;92(2):92–100. doi: 10.1007/s00422-004-0538-7 15685392
28. Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational intelligence and neuroscience. 2011;2011:1. doi: 10.1155/2011/720971
29. Pascual-Marqui RD. Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv preprint arXiv:07103341. 2007.
30. Creem-Regehr SH, Lee JN. Neural representations of graspable objects: are tools special? Cognitive Brain Research. 2005;22(3):457–69. doi: 10.1016/j.cogbrainres.2004.10.006 15722215
31. Arnstein D, Cui F, Keysers C, Maurits NM, Gazzola V. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience. 2011;31(40):14243–9. doi: 10.1523/JNEUROSCI.0963-11.2011 21976509
32. Cochin S, Barthelemy C, Lejeune B, Roux S, Martineau J. Perception of motion and qEEG activity in human adults. Electroencephalography and clinical neurophysiology. 1998;107(4):287–95. doi: 10.1016/s0013-4694(98)00071-6 9872446
33. Frenkel-Toledo S, Bentin S, Perry A, Liebermann DG, Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements. Brain research. 2013;1509:43–57. doi: 10.1016/j.brainres.2013.03.004 23500633
34. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proceedings of the National Academy of Sciences. 1998;95(25):15061–5.
35. Perry A, Bentin S. Mirror activity in the human brain while observing hand movements: A comparison between EEG desynchronization in the μ-range and previous fMRI results. Brain research. 2009;1282:126–32. doi: 10.1016/j.brainres.2009.05.059 19500557
36. Caggiano V, Fogassi L, Rizzolatti G, Thier P, Casile A. Mirror neurons differentially encode the peripersonal and extrapersonal space of monkeys. science. 2009;324(5925):403–6. doi: 10.1126/science.1166818 19372433
37. Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annual review of neuroscience. 2010;33:269–98. doi: 10.1146/annurev.neuro.051508.135409 20345247
38. Proverbio AM. Tool perception suppresses 10–12Hz μ rhythm of EEG over the somatosensory area. Biological psychology. 2012;91(1):1–7. doi: 10.1016/j.biopsycho.2012.04.003 22543070
39. Proverbio AM, Adorni R, D’Aniello GE. 250ms to code for action affordance during observation of manipulable objects. Neuropsychologia. 2011;49(9):2711–7. doi: 10.1016/j.neuropsychologia.2011.05.019 21664367
40. Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology. 1999;110(11):1842–57. doi: 10.1016/s1388-2457(99)00141-8 10576479
41. Salmelin R, Hámáaláinen M, Kajola M, Hari R. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. 1995;2(4):237–43. doi: 10.1006/nimg.1995.1031 9343608
42. Baker S, Olivier E, Lemon R. Coherent oscillations in monkey motor cortex and hand muscle EMG show task‐dependent modulation. The Journal of physiology. 1997;501(1):225–41.
43. Zavala B, Zaghloul K, Brown P. The subthalamic nucleus, oscillations, and conflict. Movement Disorders. 2015;30(3):328–38. doi: 10.1002/mds.26072 25688872
44. Swann N, Tandon N, Canolty R, Ellmore TM, McEvoy LK, Dreyer S, et al. Intracranial EEG reveals a time-and frequency-specific role for the right inferior frontal gyrus and primary motor cortex in stopping initiated responses. Journal of Neuroscience. 2009;29(40):12675–85. doi: 10.1523/JNEUROSCI.3359-09.2009 19812342
45. Androulidakis AG, Doyle LM, Yarrow K, Litvak V, Gilbertson TP, Brown P. Anticipatory changes in beta synchrony in the human corticospinal system and associated improvements in task performance. European Journal of Neuroscience. 2007;25(12):3758–65. doi: 10.1111/j.1460-9568.2007.05620.x 17610595
46. Joundi RA, Jenkinson N, Brittain J-S, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Current Biology. 2012;22(5):403–7. doi: 10.1016/j.cub.2012.01.024 22305755
47. Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. Journal of Neuroscience. 2011;31(34):12165–70. doi: 10.1523/JNEUROSCI.0978-11.2011 21865459
48. Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans. Current Biology. 2009;19(19):1637–41. doi: 10.1016/j.cub.2009.07.074 19800236
49. Wach C, Krause V, Moliadze V, Paulus W, Schnitzler A, Pollok B. Effects of 10Hz and 20Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behavioural brain research. 2013;241:1–6. doi: 10.1016/j.bbr.2012.11.038 23219965
50. Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current opinion in neurobiology. 2007;17(6):656–64. doi: 10.1016/j.conb.2007.12.001 18221864
51. Jenkinson N, Brown P. New insights into the relationship between dopamine, beta oscillations and motor function. Trends in neurosciences. 2011;34(12):611–8. doi: 10.1016/j.tins.2011.09.003 22018805
52. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Current opinion in neurobiology. 2010;20(2):156–65. doi: 10.1016/j.conb.2010.02.015 20359884
53. Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in neurosciences. 1995;18(7):314–20. 7571012
54. Rizzolatti G, Gentilucci M. Motor and visual-motor functions of the premotor cortex. Neurobiology of neocortex. 1988;42:269–84.
55. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European journal of neuroscience. 2001;13(2):400–4. 11168545
56. Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P. Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology. 2006;16(19):1905–10. doi: 10.1016/j.cub.2006.07.065 17027486
57. Galati G, Committeri G, Spitoni G, Aprile T, Di Russo F, Pitzalis S, et al. A selective representation of the meaning of actions in the auditory mirror system. Neuroimage. 2008;40(3):1274–86. doi: 10.1016/j.neuroimage.2007.12.044 18276163
58. Grafton ST, Arbib MA, Fadiga L, Rizzolatti G. Localization of grasp representations in humans by positron emission tomography. Experimental brain research. 1996;112(1):103–11. doi: 10.1007/bf00227183 8951412
59. Ortigue S, Sinigaglia C, Rizzolatti G, Grafton ST. Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study. PloS one. 2010;5(8):e12160. doi: 10.1371/journal.pone.0012160 20730095
60. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Cognitive brain research. 1996;3(2):131–41. doi: 10.1016/0926-6410(95)00038-0 8713554
61. Swick D, Ashley V, Turken U. Left inferior frontal gyrus is critical for response inhibition. BMC neuroscience. 2008;9(1):102.
62. Buccino G, Sato M, Cattaneo L, Rodà F, Riggio L. Broken affordances, broken objects: a TMS study. Neuropsychologia. 2009;47(14):3074–8. doi: 10.1016/j.neuropsychologia.2009.07.003 19615389
63. Chao LL, Martin A. Representation of manipulable man-made objects in the dorsal stream. Neuroimage. 2000;12(4):478–84. doi: 10.1006/nimg.2000.0635 10988041
64. Grafton ST, Fadiga L, Arbib MA, Rizzolatti G. Premotor cortex activation during observation and naming of familiar tools. Neuroimage. 1997;6(4):231–6. doi: 10.1006/nimg.1997.0293 9417966
65. Grèzes J, Tucker M, Armony J, Ellis R, Passingham RE. Objects automatically potentiate action: an fMRI study of implicit processing. European Journal of Neuroscience. 2003;17(12):2735–40. doi: 10.1046/j.1460-9568.2003.02695.x 12823480
66. Johnson-Frey SH, Newman-Norlund R, Grafton ST. A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral cortex. 2004;15(6):681–95. doi: 10.1093/cercor/bhh169 15342430
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy