Algorithmic handwriting analysis of the Samaria inscriptions illuminates bureaucratic apparatus in biblical Israel
Autoři:
Shira Faigenbaum-Golovin aff001; Arie Shaus aff001; Barak Sober aff004; Eli Turkel aff001; Eli Piasetzky aff005; Israel Finkelstein aff002
Působiště autorů:
Department of Applied Mathematics, Tel Aviv University, Tel Aviv, Israel
aff001; Jacob M. Alkow Department of Archaeology and Ancient Near Eastern Civilizations, Tel Aviv University, Tel Aviv, Israel
aff002; Department of Genetics, Harvard Medical School, Boston, MA, United States of America
aff003; Department of Mathematics, Duke University, Durham, NC, United States of America
aff004; School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227452
Souhrn
Past excavations in Samaria, capital of biblical Israel, yielded a corpus of Hebrew ink on clay inscriptions (ostraca) that documents wine and oil shipments to the palace from surrounding localities. Many questions regarding these early 8th century BCE texts, in particular the location of their composition, have been debated. Authorship in countryside villages or estates would attest to widespread literacy in a relatively early phase of ancient Israel's history. Here we report an algorithmic investigation of 31 of the inscriptions. Our study establishes that they were most likely written by two scribes who recorded the shipments in Samaria. We achieved our results through a method comprised of image processing and newly developed statistical learning techniques. These outcomes contrast with our previous results, which indicated widespread literacy in the kingdom of Judah a century and half to two centuries later, ca. 600 BCE.
Klíčová slova:
Algorithms – Deserts – Digital imaging – Imaging techniques – Israel – Literacy – Monte Carlo method – Oils
Zdroje
1. Faigenbaum-Golovin S, Shaus A, Sober B, Levin D, Na’aman N, Sass B, et al. Algorithmic handwriting analysis of Judah’s military correspondence sheds light on composition of biblical texts. Proc Natl Acad Sci USA. 2016; 113: 4664–4669. doi: 10.1073/pnas.1522200113 27071103
2. Finkelstein I. The Forgotten Kingdom. The Archaeology and History of Northern Israel. Atlanta: Society of Biblical Literature. 2013.
3. Reisner GA, Fischer CS, Lyon DG. Harvard Excavations at Samaria. Cambridge, MA: Harvard University Press. 1924.
4. Aḥituv S. Echoes from the Past: Hebrew and Cognate Inscriptions from the Biblical Period. Jerusalem: Carta. 2008.
5. Aharoni Y. The Land of the Bible: A Historical Geography. Louisville, KY: Westminster John Knox Press. 1979.
6. Lemaire A. Les ostraca hébreux de l'époque royale Israélite. Paris, 1973.
7. Lemaire A. Inscriptions hébraques, Vol. 1: Les ostraca. Littératures anciennes du Proche-Orient 9. Paris: Cerf. 1977.
8. Rainey AF. Toward a precise date for the Samaria ostraca. Bull Am Schools Orient Res. 1988; 272: 69–74.
9. Tappy RE. The Archaeology of the Ostraca House at Israelite Samaria: Epigraphic Discoveries in Complicated Contexts. ASOR 70. Boston: American Schools of Oriental Research. 2016.
10. USGS EROS (Earth Resources Observatory and Science (EROS) Center) (public domain): https://www.usgs.gov/centers/eros
11. Yadin Y. Recipients or owners? A note on the Samaria ostraca. Isr Explor J. 1959; 9: 184–187.
12. Rendsburg G. Diglossia in Ancient Hebrew. American Oriental Series 72. New Haven, CT: American Oriental Society. 1990.
13. Kaufman IT. Samaria ostraca. In Freedman DN, editor. The Anchor Bible Dictionary, Vol. 5. New York, NY: Doubleday. 1992. pp 921–926.
14. Niemann HM. A new look at the Samaria ostraca: The king-clan relationship. Tel Aviv. 2008; 35: 249–266.
15. Shaus A. Turkel E. Writer identification in modern and historical documents via binary pixel patterns, Kolmogorov‐Smirnov test and Fisher’s method. J Imaging Sci Technol. 2017; 61: 010404–1–010404–9. https://doi.org/10.2352/J.ImagingSci.Technol.2017.61.1.010404
16. Faigenbaum-Golovin S. Levin D. Piasetzky E. Finkelstein I. Writer characterization and identification of short modern and historical documents: reconsidering paleographic tables. Proceedings of the 19th ACM Symposium on Document Engineering (DocEng 2019), 23:1–23:4.
17. Samaria Ancient Hebrew dataset, figshare (CC BY 4.0 license): https://doi.org/10.6084/m9.figshare.10266206.v1
18. Faigenbaum S, Sober B, Shaus A, Moinester M, Piasetzky E, Bearman G, et al. Multispectral images of ostraca: Acquisition and analysis. J Archaeol Sci. 2012; 39: 3581–3590. https://doi.org/10.1016/j.jas.2012.06.013
19. Sober B, Faigenbaum S, Beit-Arieh I, Finkelstein I, Moinester M, Piasetzky E, et al. Multispectral imaging as a tool for enhancing the reading of ostraca. Palestine Exploration Quarterly. 2004; 146: 185–197. https://doi.org/10.1179/0031032814Z.000000000101
20. Faigenbaum-Golovin S, Mendel-Geberovich A, Shaus A, Sober B, Cordonsky M, Levin D, et al. Multispectral imaging reveals biblical-period inscription unnoticed for half a century. PLOS ONE. 2017; 12: e0178400. https://doi.org/10.1371/journal.pone.0178400
21. Mendel-Geberovich A, Shaus A, Faigenbaum-Golovin S, Sober B, Cordonsky M, Piasetzky E, et al. A brand new old inscription: Arad ostracon 16 rediscovered via multispectral imaging. Bull Am Schools Orient Res. 2017; 378: 113–125. https://doi.org/10.5615/bullamerschoorie.378.0113
22. Faigenbaum S, Sober B, Finkelstein I, Moinester M, Piasetzky E, Shaus A, et al. Multispectral imaging of two Hieratic inscriptions from Qubur el-Walaydah. Egypt and the Levant. 2014; 24: 349–353. https://doi.org/10.1553/s349
23. Faigenbaum S, Sober B, Moinester M, Piasetzky E, Bearman G. Multispectral imaging of Tel Malhata ostraca. In Beit-Arieh I, Freud L, editors. Tel Malhata: A Central City in the Biblical Negev. Tel Aviv: Tel Aviv University. 2015. pp. 510–513.
24. Shaus A, Sober B, Tzang O, Ioffe Z, Cheshnovsky O, Finkelstein I. Raman binary mapping of Iron Age ostracon in unknown material composition and high fluorescence setting–A proof of concept, Archaeometry. 2019; 61, 459–469. https://doi.org/10.1111/arcm.12419
25. Shaus A, Turkel E, Piasetzky E, Binarization of First Temple period inscriptions—Performance of existing algorithms and a new registration based scheme. Proceedings of the 13th International Conference on Frontiers in Handwriting Recognition (ICFHR 2012), 641–646. https://doi.org/10.1109/ICFHR.2012.187
26. Shaus A, Sober B, Turkel E, Piasetzky E. Improving binarization via sparse methods. Proceedings of the 16th International Graphonomics Society Conference (IGS 2013), 163–166.
27. Bar-Yosef I, Beckman I, Kedem K, Dinstein I. Binarization, character extraction, and writer identification of historical Hebrew calligraphy documents. Int J Doc Anal Recognit. 2007; 9: 89–99.
28. Bulacu M, Schomaker L. Text-independent writer identification and verification using textural and allographic features. IEEE Trans Pattern Anal Mach Intell. 2007; 29: 701–717. doi: 10.1109/TPAMI.2007.1009 17299226
29. Panagopoulos M, Papaodysseus C, Rousopoulos P, Dafi D. Tracy S. Automatic writer identification of ancient Greek inscriptions. IEEE Trans Pattern Anal Mach Intell. 2009; 31: 1404–1414. doi: 10.1109/TPAMI.2008.201 19542575
30. Fecker D, Asit A, Märgner V, El-Sana J, Fingscheidt T, Writer identification for historical Arabic documents. Proceedings of the 22nd International Conference on Pattern Recognition (ICPR 2014), 3050–3055.
31. Dhali M, He S, Popovic M, Tigchelaar E, Schomaker L. A digital palaeographic approach towards writer identification in the Dead Sea scrolls. Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), 693–702.
32. Dahllöf M, Automatic scribe attribution for medieval manuscripts. Digital Medievalist. 2018; 11: 1–26.
33. Aharoni Y, Arad Inscriptions. Jerusalem: Israel Exploration Society. 1981.
34. Sober B, Levin D. Computer aided restoration of handwritten character strokes. Computer-Aided Design. 2017; 89: 12–24.
35. Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math. 1989; 42: 577–685.
36. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vis. 1988; 1: 321–331.
37. Rollston CA. The script of Hebrew Ostraca of the Iron Age: 8th–6th centuries BCE, PhD thesis, Johns Hopkins University, Baltimore. 1999.
38. Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004; 60: 91–110.
39. Markus D, Sablatnig R. Recognition of degraded handwritten characters using local features. Proceedings of the 10th International Conference on Document Analysis and Recognition (ICDAR 2009), 221–225.
40. Tahmasbi A, Saki F, Shokouhi SB. Classification of benign and malignant masses based on Zernike moments. Comput Biol Med 41. 2011; 726–735. doi: 10.1016/j.compbiomed.2011.06.009 21722886
41. Tahmasbi A. Zernike moments. 2012. Available at www.mathworks.com/matlabcentral/fileexchange/38900-zernike-moments.
42. Sexton A, Todman A, Woodward K. Font recognition using shape-based quadtree and kd-tree decomposition. Proceedings of the 3rd International Conference on Computer Vision, Pattern Recognition and Image Processing (CVPRIP 2000), 212–215.
43. Armon S. Descriptor for shapes and letters (feature extraction). 2012. Available at www.mathworks.com/matlabcentral/fileexchange/35038-descriptor-for-shapes-andletters-feature-extraction.
44. Trier ØD, Jain AK, Taxt T. Feature extraction methods for character recognition—A survey. Pattern Recognit. 1996; 29: 641–662.
45. Shaus A, Turkel E, Piasetzky E. Quality evaluation of facsimiles of Hebrew First Temple period inscriptions. Proceedings of the 10th IAPR International Workshop on Document Analysis Systems (DAS 2012), 170–174. https://doi.org/10.1109/DAS.2012.70
46. Shaus A, Faigenbaum-Golovin S, Sober B, Turkel E, Piasetzky E. Potential contrast—A new image quality measure, In Proceedings of the IS&T International Symposium on Electronic Imaging 2017, Image Quality and System Performance XIV Conference (IQSP 2017), 52–58. https://doi.org/10.2352/ISSN.2470-1173.2017.12.IQSP-226
47. Fisher RA. Statistical Methods for Research Workers. Edinburgh: Oliver and Boyd. 1925.
48. Goren Y, Finkelstein I, Naʼaman N. Inscribed in Clay: Provenance Study of the Amarna Tablets and other Ancient Near Eastern Texts. Tel Aviv University Monograph Series 28. Tel Aviv: Tel Aviv Univ. 2004.
49. Meshel Z. Kuntillet ʻAjrud (Ḥorvat Teman): An Iron Age II Religious Site on the Judah-Sinai Border. Jerusalem: Israel Exploration Society. 2012.
50. Finkelstein I, Sass B. The West Semitic alphabetic inscriptions, Late Bronze II to Iron IIA: Archeological context, distribution and chronology. Hebrew Bible and Ancient Israel. 2013; 2: 149–220.
51. Sass B, Finkelstein I. The swan-song of Proto-Canaanite in the ninth century BCE in light of an alphabetic inscription from Megiddo. Semitica et Classica. 2016; 9: 19–42.
52. Mendel A. Epigraphic lists in Israel and its neighbors in the First Temple period, PhD thesis, Hebrew University, Jerusalem. 2014.
53. Mazar A. Excavations at Tel Beth-Shean 1989–1996: Vol. I: From the Late Bronze Age IIB to the Medieval Period. The Beth-Shean Valley Archaeological Project Publications 1. Jerusalem: Israel Exploration Society. 2006.
54. Torczyner H. Lachish I: The Lachish Letters. London and New York: Oxford University Press. 1938.
55. Beit-Arieh I. Horvat ‘Uza and Horvat Radum: Two Fortresses in the Biblical Negev. Tel Aviv University Monograph Series 25. Tel Aviv: Tel Aviv University. 2007.
56. Beit-Arieh I, Freud L. Tel Malhata: A Central City in the Biblical Negev. Tel Aviv University Monograph Series 32. Tel Aviv: Tel Aviv University. 2015.
57. Faigenbaum-Golovin S, Rollston CA, Piasetzky E, Sober B, Finkelstein I. The Ophel (Jerusalem) ostracon in light of new multispectral images. Semitica. 2015; 57: 113–137.
58. Naveh J. A Hebrew letter from the seventh century B.C. Isr Explor J. 1960; 10: 129–139.
59. Mendel-Geberovich A, Faigenbaum-Golovin S, Shaus A, Sober B, Cordonsky M, Piasetzky E, et al. A renewed reading of Hebrew ostraca from Cave A-2 at Ramat Beit Shemesh (Nahal Yarmut), based on multispectral imaging. Vetus Testamentum. 2019; 69: 682–701. https://doi.org/10.1163/15685330-00001370
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy