Comparison of blood lactate and perceived exertion responses in two matched time-under-tension protocols
Autoři:
Salvador Vargas-Molina aff001; Fernando Martín-Rivera aff003; Diego A. Bonilla aff004; Jorge L. Petro aff005; Leandro Carbone aff006; Ramón Romance aff002; Manuel deDiego aff001; Brad J. Schoenfeld aff007; Javier Benítez-Porres aff002
Působiště autorů:
EADE-University of Wales Trinity Saint David, Málaga, Spain
aff001; Human Kinetics and Body Composition Laboratory, University of Málaga, Málaga, Spain
aff002; Research Unit in Sports and Health, University of Valencia, Valencia, Spain
aff003; Research Division, DBSS International, Bogotá, Colombia
aff004; Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería, Colombia
aff005; University of Salvador, Buenos Aires, Argentina
aff006; Health Sciences Department, CUNY Lehman College, Bronx, NY, United States of America
aff007
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227640
Souhrn
Purpose
The aim of this study was to compare the concentration of blood lactate [bLa-] and the subjective perception of exertion of trained men in a moderate repetition protocol (MRP) versus a high repetition protocol (HRP) equated for time under tension.
Methods
A sample of 40 healthy young men (aged, 23.2 ± 4.0 years; height, 177.3 ± 7.0 cm; BMI, 24.3 ± 2.2) performed two sessions of 8 sets of bicep curls with a one-week recovery interval between the trials. In the HRP protocol, 20 repetitions were performed with a cadence of 2 seconds of eccentric and 1 second of concentric, while in the MRP protocol 10 repetitions were performed with 4 seconds of eccentric and 2 seconds of concentric. Cadences were controlled by a metronome. At the beginning and end of each of the sessions, blood lactate was taken at 2, 15, and 30 minutes, and rating of perceived exertion (OMNI-RES) was assessed immediately after completion of each session.
Results
There were [bLa-] differences between protocols in the MRP 2 min, (5.2 ±1.4); 15 min, (3.2 ±1.2); 30 min, (1.9 ±0.6); p< 0.05, and the HRP 2 min, (6.1 ±1.6); 15 min, (3.7 ±1.1); 30 min, (2.2 ±0.6); p<0.01. OMNI-RES was higher in HRP, (8.8 ±0.7) than in MRP, (7.7 ±0.9). Additionally, a correlation was found between the RPE and [bLa-] values in the HRP protocol (rs = 0.35, p < 0.01).
Conclusions
Training protocols with high times under tension promote substantial increases in metabolic stress, however, our findings indicate that HRP generates more [bLa-] than MRP. In addition, there were higher RPE values in the HRP protocol compared to MRP in single-joint exercises.
Klíčová slova:
Biosynthesis – Blood – Metabolites – Muscle proteins – Software tools – Strength training – Elbow – Muscle biochemistry
Zdroje
1. Schoenfeld BJ. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J Strength Cond Res. 2010;24(10):2857–72. doi: 10.1519/JSC.0b013e3181e840f3 WOS:000282481800040. 20847704
2. Schoenfeld BJ, Ogborn DI, Krieger JW. Effect of Repetition Duration During Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sports Med. 2015;45(4):577–85. doi: 10.1007/s40279-015-0304-0 WOS:000352165100009. 25601394
3. Schoenfeld BJ. Potential Mechanisms for a Role of Metabolic Stress in Hypertrophic Adaptations to Resistance Training. Sports Med. 2013;43(3):179–94. doi: 10.1007/s40279-013-0017-1 WOS:000318535300003. 23338987
4. Gentil P, Oliveira E, Bottaro M. Time under tension and blood lactate response during four different resistance training methods. Journal of physiological anthropology. 2006;25(5):339–44. doi: 10.2114/jpa2.25.339 17016010.
5. Buitrago S, Wirtz N, Yue Z, Kleinoder H, Mester J. Effects of load and training modes on physiological and metabolic responses in resistance exercise. European journal of applied physiology. 2012;112(7):2739–48. doi: 10.1007/s00421-011-2249-9 22116573.
6. Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–61. doi: 10.2165/00007256-200535040-00004 15831061.
7. Mangine GT, Hoffman JR, Gonzalez AM, Townsend JR, Wells AJ, Jajtner AR, et al. Exercise-Induced Hormone Elevations Are Related to Muscle Growth. J Strength Cond Res. 2017;31(1):45–53. doi: 10.1519/JSC.0000000000001491 28005636.
8. Schoenfeld BJ. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design. Journal of strength and conditioning research. 2013;27(6):1720–30. Epub 2013/02/28. doi: 10.1519/JSC.0b013e31828ddd53 23442269.
9. Pierce JR, Clark BC, Ploutz-Snyder LL, Kanaley JA. Growth hormone and muscle function responses to skeletal muscle ischemia. Journal of applied physiology. 2006;101(6):1588–95. doi: 10.1152/japplphysiol.00585.2006 16888046.
10. Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, et al. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. Journal of applied physiology. 2015;118(6):742–9. doi: 10.1152/japplphysiol.00054.2014 25571987.
11. Tsukamoto S, Shibasaki A, Naka A, Saito H, Iida K. Lactate Promotes Myoblast Differentiation and Myotube Hypertrophy via a Pathway Involving MyoD In Vitro and Enhances Muscle Regeneration In Vivo. International journal of molecular sciences. 2018;19(11). Epub 2018/11/23. doi: 10.3390/ijms19113649 30463265; PubMed Central PMCID: PMC6274869.
12. Nalbandian M, Takeda M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology. 2016;5(4). Epub 2016/10/16. doi: 10.3390/biology5040038 27740597; PubMed Central PMCID: PMC5192418.
13. Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? European journal of applied physiology. 2017;117(11):2125–35. doi: 10.1007/s00421-017-3690-1 WOS:000412896200001. 28776271
14. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol-London. 2004;558(1):5–30. doi: 10.1113/jphysiol.2003.058701 WOS:000222859600004. 15131240
15. Weakley JJS, Till K, Read DB, Roe GAB, Darrall-Jones J, Phibbs PJ, et al. The effects of traditional, superset, and tri-set resistance training structures on perceived intensity and physiological responses. European journal of applied physiology. 2017;117(9):1877–89. doi: 10.1007/s00421-017-3680-3 WOS:000407724700010. 28698987
16. Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sport Exer. 2003;35(2):333–41. doi: 10.1249/01.Mss.0000048831.15016.2a WOS:000180921400024. 12569225
17. Suminski RR, Robertson RJ, Arslanian S, Kang J, Utter AC, DaSilva SG, et al. Perception of Effort During Resistance Exercise. The Journal of Strength & Conditioning Research. 1997;11(4):261–5. 00124278-199711000-00012.
18. Aniceto RR, Ritti-Dias RM, Dos Prazeres TM, Farah BQ, de Lima FF, do Prado WL. Rating of Perceived Exertion During Circuit Weight Training: A Concurrent Validation Study. J Strength Cond Res. 2015;29(12):3336–42. doi: 10.1519/JSC.0000000000000998 26595128.
19. Utter A. Perceived exertion, electromyography, and blood lactate during acute bouts of resistance exercise. Medicine & Science in Sports & Exercise. 2002;34:560. doi: 10.1097/00005768-200203000-00026
20. Hollander DB, Kilpatrick MW, Ramadan ZG, Reeves GV, Francois M, Blakeney A, et al. Load Rather Than Contraction Type Influences Rate of Perceived Exertion and Pain. The Journal of Strength & Conditioning Research. 2008;22(4):1184–93. doi: 10.1519/JSC.0b013e31816a8bc2 00124278-200807000-00022. 18545190
21. Kraemer RR, Acevedo EO, Dzewaltowski D, Kilgore JL, Kraemer GR, Castracane VD. Effects of Low-Volume Resistive Exercise on Beta-Endorphin and Cortisol Concentrations. Int J Sports Med. 1996;17(01):12–6. doi: 10.1055/s-2007-972801 8775570
22. Hollander D, Worley J, Asoodeh M, Wakesa D, Magnuson M, Dantzler D, et al. Comparison of Resistance Exercise Perceived Exertion and Muscle Activation at Varied Submaximal Durations, Loads, and Muscle Actions. Journal of Strength and Conditioning Research. 2015;31:1. doi: 10.1519/JSC.0000000000001290 26670992
23. Pierce K, Rozenek R, Stone MH. Effects of High Volume Weight Training on Lactate, Heart Rate, and Perceived Exertion. The Journal of Strength & Conditioning Research. 1993;7(4):211–5. 00124278-199311000-00004.
24. Broxterman RM, Hureau TJ, Layec G, Morgan DE, Bledsoe AD, Jessop JE, et al. Influence of group III/IV muscle afferents on small muscle mass exercise performance: a bioenergetics perspective. The Journal of physiology. 2018;596(12):2301–14. Epub 2018/05/08. doi: 10.1113/JP275817 29644702.
25. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. Epub 2013/10/22. doi: 10.1001/jama.2013.281053 24141714.
26. Forsyth JJ, Farrally MR. A comparison of lactate concentration in plasma collected from the toe, ear, and fingertip after a simulated rowing exercise. Brit J Sport Med. 2000;34(1):35–8. doi: 10.1136/Bjsm.34.1.35 WOS:000085153000013. 10690448
27. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg's rating of perceived exertion and physiological measures of exercise intensity. European journal of applied physiology. 2013;113(1):147–55. doi: 10.1007/s00421-012-2421-x WOS:000313033600015. 22615009
28. Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of applied physiology. 2016;121(1):129–38. doi: 10.1152/japplphysiol.00154.2016 WOS:000380750700016. 27174923
29. Lacerda LT, Martins-Costa HC, Diniz RC, Lima FV, Andrade AG, Tourino FD, et al. Variations in Repetition Duration and Repetition Numbers Influence Muscular Activation and Blood Lactate Response in Protocols Equalized by Time Under Tension. J Strength Cond Res. 2016;30(1):251–8. doi: 10.1519/JSC.0000000000001044 26691414.
30. Gentil P, Oliveira E, Fontana K, Molina G, Oliveira RJd, Bottaro M. Efeitos agudos de vários métodos de treinamento de força no lactato sanguíneo e características de cargas em homens treinados recreacionalmente. Rev Bras Med Esporte. 2006;12:303–7.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy