#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Construction of a high-density genetic map and fine mapping of a candidate gene locus for a novel branched-spike mutant in barley


Autoři: Weibin Wang aff001;  Junyu He aff001;  Shengwei Chen aff001;  Peng Peng aff001;  Wei Zhong aff001;  Xintian Wang aff001;  Tingting Zhang aff001;  Yuping Li aff001
Působiště autorů: College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227617

Souhrn

A Yunnan branched-spike (Ynbs) barley mutant is useful for study of the genetic mechanisms underlying variation in barley spike architecture. In the current study, a mutant (Ynbs-1), a recombinant inbred line (RIL-1), and a cultivar (BDM-8) were used as parents to develop populations. Ynbs-1 exhibits typical branched spike, whereas the others exhibit six-row spike. Genetic analysis on their F1, F2 and F3 populations showed that one recessive gene is responsible for the branched spike trait. SLAF marker generated from specific locus amplified fragment sequencing (SLAF-seq) was used to genotype the populations. A high-density genetic map of barley was constructed using 14,348 SLAF markers, which covered all 7 chromosomes at 1,347.44 cM in length with an average marker density of 0.09 cM between adjacent markers. Linkage analysis of the branched-spike trait using the genetic map indicated that branched spike trait in the Ynbs-1 is controlled by single locus on chromosome 2H at the interval between 65.00 and 65.47 cM that is flanked by Marker310119 and Marker2679451. Several candidate genes that may be responsible for barley multiple-spikelet degeneration, single-floret spikelet increase and seed set rate decrease were identified in the region. The high-density genetic map and the gene locus revealed in this study provide valuable information for elucidating the genetic mechanism of spike branching in barley.

Klíčová slova:

Barley – Gene mapping – Genetic linkage – Genetic loci – Chromosome mapping – Linkage mapping – Quantitative trait loci – Rice


Zdroje

1. Li JL. Abnormal branch phenomenon of some wild barley plants. Journal of Harbin Normal College(Natural Science Edition). 1963; 132–140. http://www.cnki.com.cn/Article/CJFDTotal-HEBY196300016.htm

2. Larsson H.E.B. Branching spike mutants from two loci in two-row barley. Barley Genetics Newsletter. 1981; 11: 25–28. https://eurekamag.com/research/000/831/000831467.php

3. Feng ZY, Zhang LL, Zhang YZ, Ling HQ. Chromosomal location of gene for earbranching of barley natural mutant "f151" using SSR markers. High Technology Letters. 2004; 10(2): 5–8. doi: 10.3772/j.issn.1006-6748.2004.02.002

4. Ji HQ, Chen QF, Lin XJ. Study on poly-row barley with multi-branches of spikelets emerged by directly of DNAs. Journal of Fujian Agricultural University. 1995; 24(1):9–13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJND501.001.htm

5. Zhang J, Qu DC. “93–507”, a barley mutant with multi-node, dwarf stem and branch. Chinese Journal of barley science. 1995; 44(3):44–46. http://www.cnki.com.cn/Article/CJFDTotal-DMKX199503019.htm

6. Shen ZH, Li JY, Chen SW, Mo F, Li YQ, Pu XY, et al. Spike characteristics and difference analysis on nine branched-spike mutants of naked kernel barley. Journal of Triticeae Crops. 2017; 37(1):66–67. http://en.cnki.com.cn/Article_en/CJFDTotal-MLZW201701010.htm

7. Shang Y, Zhu JH, Hua W, Wang JM, Jia QJ, Yang JM. Characterization and mapping of a Prbs gene controlling spike development in Barley. Genes & genomics. 2014; 36(3):275–282. doi: 10.1007/s13258-013-0165-6

8. Peng P, Xiong JL, Chen SW, Chen SY, Shen ZH, CaiC, et al. Development process of young spike and its corresponding relationship with leaf age in different barley varieties with three spike type. Journal of Triticeae Crops. 2018; 38(2):134–141. http://en.cnki.com.cn/Article_en/CJFDTotal-MLZW201802003.htm

9. Wang JX, Li JY, Chen SW, Mo F, Li YQ, Pu XY, et al. The identification of mutant traits of 9 naked barley lines with spike branch and the analysis of the association between these mutant traits. Journal of Yunnan agricultural university(Natural science). 2017; 32(2):387–394. http://en.cnki.com.cn/Article_en/CJFDTotal-YNDX201703001.htm

10. Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P, Bini F, et al. The genetic basis of composite spike form in barley and 'Miracle-Wheat'. Genetics. 2015; 201(1):155–165. doi: 10.1534/genetics.115.176628 26156223

11. Huang BG, Wu WR, Liu SH, Huang ZG. Genetic analysis on poly-row-and-branched spike mutant in barley. Hereditas(Beijing). 2004; 26(6):903–906. 15640124

12. Huang BG, Wu WR. Mapping of mutant gene prbs controlling poly-row-and-branched spike in barley (Hordeum vulgare L.). Agricultural Sciences in China. 2011; 10(10):1501–1505. http://www.cnki.com.cn/Article/CJFDTotal-ZGNX201110003.htm

13. von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S. Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet. 2008; 117(5):653–669. doi: 10.1007/s00122-008-0787-2 18618094

14. Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS. Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome. 2006; 49(5):454–466. doi: 10.1139/g05-128 16767170

15. Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet. 2005; 110(2):356–363. doi: 10.1007/s00122-004-1847-x 15549229

16. Teulat B, Merah O, Souyris I., This D. QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet. 2001; 103:774–787. doi: 10.1007/s001220100619

17. Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high throughput sequencing. Plos One. 2013; 8(3):e58700–. doi: 10.1371/journal.pone.0058700 23527008

18. Jia QJ, Tan C, Wang JM, Zhang XQ, Zhu JH, Luo H, et al. Marker development using SLAF-seq and whole-genome shotgun strategy to fine-map the semi-dwarf gene ari-e in barley. MBC Genomics. 2016; 17(1):911. doi: 10.1186/s12864-016-3247-4 27835941

19. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012; 491(7426): 711–716. doi: 10.1038/nature11543 23075845

20. Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, et al. Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics. 2011; 12(1):4. doi: 10.1186/1471-2164-12-4 21205322

21. Wang JB, Sun GL, Ren XF, Li CD, Liu LP, Wang QF, et al. QTL underlying some agronomic traits in barley detected by SNP markers. BMC Genetics. 2016; 17(1):103. doi: 10.1186/s12863-016-0409-y 27388211

22. Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, et al. An evaluation of genotyping by sequencing (GBS)to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics. 2014; 15:104. doi: 10.1186/1471-2164-15-104 24498911

23. Zhou GF, Zhang QS, Zhang XQ, Tan C, Li CD. Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. Plos One, 2015; 10(7):e0133161. doi: 10.1371/journal.pone.0133161 26182149

24. Wang YK, Hu Y, Zhang TZ. Current status and perspective of RAD-seq in genomic research. Hereditas (Beijing). 2014; 36(1):41–49. doi: 10.3724/sp.j.1005.2014.00041 24846917

25. Zhang CX, Jin FX, Li SF, Liu WP, Ma XJ, Yang S, et al. Fine mapping of major QTLs for alkaline tolerance at the seedling stage in maize (Zea mays L.) through genetic linkage analysis combined with high-throughput DNA sequencing. Euphytica. 2018; 214(7):120–. doi: 10.1007/s10681-018-2190-7

26. Zhao CP, Zhao GY, Geng Z, Wang ZX, Wang KH, Liu S, et al. Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genomics. 2018; 19(1):6–. doi: 10.1186/s12864-017-4406-y 29295711

27. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate. Plant J. 2007; 51(6):1030–1040. doi: 10.1111/j.1365-313X.2007.03200.x 17666027

28. Ma X, Zheng Z, Lin FS, Ge TT, Sun HM. Genetic analysis and gene mapping of a low stigma exposed mutant gene by high throughput sequencing. Plos One,2018; 13(1):e0186942. doi: 10.1371/journal.pone.0186942 29298308

29. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, et al. High-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics. 2006; 7(1):206–0. doi: 10.1186/1471-2164-7-206 16904008

30. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ. A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet. 2007; 115(3):383–391. doi: 10.1007/s00122-007-0572-7 17639300

31. Wendler N, Mascher M, Himmelbach A, Bini F, Kumlehn J, Stein N. A High-Density, Sequence-Enriched Genetic Map of Hordeum bulbosum and Its Collinearity to H. vulgare. Plant Genome.2017; 10(3). doi: 10.3835/plantgenome2017.06.0049 29293821

32. Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. The Plant Journal. 1999; 20(4):433–445. doi: 10.1046/j.1365-313x.1999.00617.x 10607296

33. Li M, Tang D, Wang KJ, Wu XR, Lu LL, Yu HX, et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice. Plant Biotechnology Journal. 2011; 9(9):1002–1013. doi: 10.1111/j.1467-7652.2011.00610.x 21447055

34. Kang JF, Li JM, Gao S, Tian C, Zha XJ. Overexpression of the leucine-rich receptor-like kinase gene LRK2 increases drought tolerance and tiller number in rice. Plant Biotechnology Journal, 2017. doi: 10.1111/pbi.12707 28182328

35. Boisson-Dernier A, Franck CM, Lituiev DS, Grossniklaus U. Receptor-like cytoplasmic kinase MARIS functions downstream of CrRLK1L-dependent signaling during tip growth. Proceedings of the National Academy of Sciences of the United States of America. 2015; 112(39):12211–6. doi: 10.1073/pnas.1512375112 26378127

36. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The CLAVATA1-related BAM1, BAM2, and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. The Plant Journal. 2006; 45:1–16. doi: 10.1111/j.1365-313X.2005.02592.x 16367950

37. Liu W, Zhang D, Tang MF, Li DY, Zhu YX, Zhu LH, et al. THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice. Journal of experimental botany. 2013; 64(14):4389–4402. doi: 10.1093/jxb/ert256 24085578


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#