Protective role of brain derived neurotrophic factor (BDNF) in obstructive sleep apnea syndrome (OSAS) patients
Autoři:
Krisstopher Richard Flores aff001; Fausta Viccaro aff001; Mauro Aquilini aff001; Stefania Scarpino aff001; Francesco Ronchetti aff001; Rita Mancini aff001; Arianna Di Napoli aff001; Davide Scozzi aff002; Alberto Ricci aff001
Působiště autorů:
Department of Clinical and Molecular Medicine, Division of Respiratory Diseases, Sant’Andrea Hospital, Sapienza University, Rome, Italy
aff001; Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227834
Souhrn
Obstructive sleep apnea syndrome (OSAS) is a common disorder characterized by repeated episodes of upper airways collapse during the sleep. The following intermittent hypoxia triggers a state of chronic inflammation, which also interests the nervous system leading to neuronal damage and increased risk of cognitive impairment. Brain derived neurotrophic factor (BDNF) is a growth factor often associated with neuroplasticity and neuroprotection whose levels increase in several condition associated with neuronal damage. However, whether patients affected by OSAS have altered BDNF levels and whether such alteration may be reflective of their cognitive impairment is still controversial. Here we show that, when compared to healthy control volunteers, OSAS patients have increased serum levels of BDNF. Moreover, OSAS patients with the higher levels of BDNF also have reduced neurocognitive impairment as measured by The Montreal Cognitive Assessment (MoCA) questionnaire. Treatment with standard non-invasive mechanical ventilation (CPAP) also was able to ameliorate the level of cognitive impairment. Altogether our results indicate that BDNF levels represent a neuroprotective response to intermittent hypoxia in OSAS patients.
Klíčová slova:
Cognitive impairment – Enzyme-linked immunoassays – Hypoxia – Inflammation – Medical hypoxia – Neuronal plasticity – Sleep apnea – Sleep disorders
Zdroje
1. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017;13(3):479–504. doi: 10.5664/jcsm.6506 28162150
2. Lal C, Strange C, Bachman D. Neurocognitive impairment in obstructive sleep apnea. Chest. 2012;141(6):1601–10. doi: 10.1378/chest.11-2214 22670023
3. Emamian F, Khazaie H, Tahmasian M, Leschziner GD, Morrell MJ, Hsiung GY, et al. The Association Between Obstructive Sleep Apnea and Alzheimer's Disease: A Meta-Analysis Perspective. Front Aging Neurosci. 2016;8:78. doi: 10.3389/fnagi.2016.00078 27148046
4. Gu XQ, Haddad GG. Decreased neuronal excitability in hippocampal neurons of mice exposed to cyclic hypoxia. J Appl Physiol (1985). 2001;91(3):1245–50.
5. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 2004;126(2):313–23. doi: 10.1016/j.neuroscience.2004.03.055 15207349
6. Aviles-Reyes RX, Angelo MF, Villarreal A, Rios H, Lazarowski A, Ramos AJ. Intermittent hypoxia during sleep induces reactive gliosis and limited neuronal death in rats: implications for sleep apnea. J Neurochem. 2010;112(4):854–69. doi: 10.1111/j.1471-4159.2009.06535.x 20002528
7. Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci. 2001;21(7):2442–50. doi: 10.1523/JNEUROSCI.21-07-02442.2001 11264318
8. Gozal D, Row BW, Kheirandish L, Liu R, Guo SZ, Qiang F, et al. Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function. J Neurochem. 2003;86(6):1545–52. doi: 10.1046/j.1471-4159.2003.01973.x 12950463
9. Shiota S, Takekawa H, Matsumoto SE, Takeda K, Nurwidya F, Yoshioka Y, et al. Chronic intermittent hypoxia/reoxygenation facilitate amyloid-beta generation in mice. J Alzheimers Dis. 2013;37(2):325–33. doi: 10.3233/JAD-130419 23948880
10. Fung SJ, Xi MC, Zhang JH, Sampogna S, Yamuy J, Morales FR, et al. Apnea promotes glutamate-induced excitotoxicity in hippocampal neurons. Brain Res. 2007;1179:42–50. doi: 10.1016/j.brainres.2007.08.044 17888415
11. Ip MS, Lam B, Chan LY, Zheng L, Tsang KW, Fung PC, et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med. 2000;162(6):2166–71. doi: 10.1164/ajrccm.162.6.2002126 11112132
12. Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia—revisited—the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45. doi: 10.1016/j.smrv.2014.07.003 25155182
13. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16. doi: 10.1016/j.freeradbiomed.2010.09.006 20840865
14. Bergeron C, Kimoff J, Hamid Q. Obstructive sleep apnea syndrome and inflammation. J Allergy Clin Immunol. 2005;116(6):1393–6. doi: 10.1016/j.jaci.2005.10.008 16337480
15. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep. 2009;32(4):447–70. doi: 10.1093/sleep/32.4.447 19413140
16. Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317. doi: 10.1146/annurev.ne.19.030196.001445 8833445
17. Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000;14(23):2919–37. doi: 10.1101/gad.841400 11114882
18. Thoenen H. The changing scene of neurotrophic factors. Trends Neurosci. 1991;14(5):165–70. doi: 10.1016/0166-2236(91)90097-e 1713715
19. Brzecka A. Brain preconditioning and obstructive sleep apnea syndrome. Acta Neurobiol Exp (Wars). 2005;65(2):213–20.
20. Xie H, Yung WH. Chronic intermittent hypoxia-induced deficits in synaptic plasticity and neurocognitive functions: a role for brain-derived neurotrophic factor. Acta Pharmacol Sin. 2012;33(1):5–10. doi: 10.1038/aps.2011.184 22212429
21. Vermehren-Schmaedick A, Jenkins VK, Knopp SJ, Balkowiec A, Bissonnette JM. Acute intermittent hypoxia-induced expression of brain-derived neurotrophic factor is disrupted in the brainstem of methyl-CpG-binding protein 2 null mice. Neuroscience. 2012;206:1–6. doi: 10.1016/j.neuroscience.2012.01.017 22297041
22. Stanzani L, Zoia C, Sala G, Appollonio I, Frattola L, De Simoni MG, et al. Nerve growth factor and transforming growth factor-beta serum levels in acute stroke patients. Possible involvement of neurotrophins in cerebrovascular disease. Cerebrovasc Dis. 2001;12(3):240–4. doi: 10.1159/000047710 11641590
23. Satriotomo I, Nichols NL, Dale EA, Emery AT, Dahlberg JM, Mitchell GS. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons. Neuroscience. 2016;322:479–88. doi: 10.1016/j.neuroscience.2016.02.060 26944605
24. Panaree B, Chantana M, Wasana S, Chairat N. Effects of obstructive sleep apnea on serum brain-derived neurotrophic factor protein, cortisol, and lipid levels. Sleep Breath. 2011;15(4):649–56. doi: 10.1007/s11325-010-0415-7 20865453
25. Wang Y, Wang JJ, Zhao MQ, Li YZ. Changes of serum brain-derived neurotrophic factor in children with obstructive sleep apnoea-hypopnoea syndrome following adenotonsillectomy. J Int Med Res. 2010;38(6):1942–51. doi: 10.1177/147323001003800607 21226997
26. Staats R, Stoll P, Zingler D, Virchow JC, Lommatzsch M. Regulation of brain-derived neurotrophic factor (BDNF) during sleep apnoea treatment. Thorax. 2005;60(8):688–92. doi: 10.1136/thx.2004.038208 16061712
27. Wang WH, He GP, Xiao XP, Gu C, Chen HY. Relationship between brain-derived neurotrophic factor and cognitive function of obstructive sleep apnea/hypopnea syndrome patients. Asian Pac J Trop Med. 2012;5(11):906–10. doi: 10.1016/S1995-7645(12)60169-2 23146807
28. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol. 2014;220:223–50. doi: 10.1007/978-3-642-45106-5_9 24668475
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy