Novel method to measure temporal windows based on eye movements during viewing of the Necker cube
Autoři:
Patrik Polgári aff001; Jean-Baptiste Causin aff001; Luisa Weiner aff001; Gilles Bertschy aff001; Anne Giersch aff001
Působiště autorů:
INSERM U1114, Strasbourg, France
aff001; University of Strasbourg, Strasbourg, France
aff002; Psychiatry Department, University Hospital of Strasbourg, Strasbourg, France
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227506
Souhrn
Bistable stimuli can give rise to two different interpretations between which our perception will alternate. Recent results showed a strong coupling between eye movements and reports of perceptual alternations with motion stimuli, which provides useful tools to objectively assess perceptual alternations. However, motion might entrain eye movements, and here we check with a static picture, the Necker cube, whether eye movements and perceptual reports (manual responses) reveal similar or different alternation rates, and similar or different sensitivity to attention manipulations. Using a cluster analysis, ocular temporal windows were defined based on the dynamics of ocular fixations during viewing of the Necker cube and compared to temporal windows extracted from manual responses. Ocular temporal windows were measured also with a control condition, where the physical stimulus presented to viewers alternated between two non-ambiguous versions of the Necker cube. Attention was manipulated by asking subjects to either report spontaneous alternations, focus on one percept, or switch as fast as possible between percepts. The validity of the ocular temporal windows was confirmed by the correspondence between ocular fixations when the physical stimulus changed and when the bistable Necker cube was presented. Ocular movements defined smaller time windows than time windows extracted from manual responses. The number of manual and ocular windows both increased between the spontaneous condition and the switch condition. However, only manual, and not ocular windows, increased in duration in the focus condition. Manual responses involve decisional mechanisms, and they may be decoupled from automatic oscillations between the two percepts, as suggested by the fact that both the number and duration of ocular windows remained stable between the spontaneous and focus conditions. In all, the recording of eye movements provides an objective measure of time windows, and reveals faster perceptual alternations with the Necker cube and less sensitivity to attention manipulations than manual responses.
Klíčová slova:
Analysis of variance – Attention – Clustering algorithms – Consciousness – Eye movements – Perception – Sensory perception – Altered states of consciousness
Zdroje
1. Kornmeier J, Bach M. Ambiguous Figures–What Happens in the Brain When Perception Changes But Not the Stimulus. Front Hum Neurosci [Internet]. 2012 [cited 2019 Jul 12];6.
2. Atmanspacher H, Filk T. A proposed test of temporal nonlocality in bistable perception. Journal of Mathematical Psychology. 2010 Jun 1;54(3):314–21.
3. Wernery J, Atmanspacher H, Kornmeier J, Candia V, Folkers G, Wittmann M. Temporal Processing in Bistable Perception of the Necker Cube. Perception. 2015 Feb;44(2):157–68. doi: 10.1068/p7780 26561969
4. Hupé J-M, Joffo L-M, Pressnitzer D. Bistability for audiovisual stimuli: Perceptual decision is modality specific. Journal of Vision. 2008 May 19;8(7):1–1.
5. Brascamp J, Blake R, Knapen T. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception. Nat Neurosci. 2015 Nov;18(11):1672–8. doi: 10.1038/nn.4130 26436901
6. Tsuchiya N, Wilke M, Frässle S, Lamme VAF. No-Report Paradigms: Extracting the True Neural Correlates of Consciousness. Trends in Cognitive Sciences. 2015 Dec;19(12):757–70. doi: 10.1016/j.tics.2015.10.002 26585549
7. Kornmeier J, Wörner R, Riedel A, Tebartz van Elst L. A different view on the Necker cube—Differences in multistable perception dynamics between Asperger and non-Asperger observers. PLoS One [Internet]. 2017 Dec 15 [cited 2019 Apr 17];12(12).
8. Hoffman RE, Quinlan DM, Mazure CM, McGlashan TM. Cortical instability and the mechanism of mania: a neural network simulation and perceptual test. Biological Psychiatry. 2001 Mar 15;49(6):500–9. doi: 10.1016/s0006-3223(00)01071-4 11257235
9. Schmack K, Sekutowicz M, Rössler H, Brandl EJ, Müller DJ, Sterzer P. The influence of dopamine-related genes on perceptual stability. European Journal of Neuroscience. 2013;38(9):3378–83. doi: 10.1111/ejn.12339 23968246
10. Frässle S, Sommer J, Jansen A, Naber M, Einhäuser W. Binocular Rivalry: Frontal Activity Relates to Introspection and Action But Not to Perception. J Neurosci. 2014 Jan 29;34(5):1738. doi: 10.1523/JNEUROSCI.4403-13.2014 24478356
11. Wilbertz G, Ketkar M, Guggenmos M, Sterzer P. Combined fMRI- and eye movement-based decoding of bistable plaid motion perception. NeuroImage. 2018 May;171:190–8. doi: 10.1016/j.neuroimage.2017.12.094 29294388
12. Spering M, Carrasco M. Acting without seeing: eye movements reveal visual processing without awareness. Trends in Neurosciences. 2015 Apr;38(4):247–58. doi: 10.1016/j.tins.2015.02.002 25765322
13. Spering M, Pomplun M, Carrasco M. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception. Psychol Sci. 2011 Feb;22(2):216–25. doi: 10.1177/0956797610394659 21189353
14. Pöppel E. A hierarchical model of temporal perception. Trends in Cognitive Sciences. 1997 May 1;1(2):56–61. doi: 10.1016/S1364-6613(97)01008-5 21223864
15. Pöppel E. Pre-semantically defined temporal windows for cognitive processing. Philos Trans R Soc Lond B Biol Sci. 2009 Jul 12;364(1525):1887–96. doi: 10.1098/rstb.2009.0015 19487191
16. Wittmann M. Moments in Time. Front Integr Neurosci [Internet]. 2011 Oct 18 [cited 2019 Apr 17];5.
17. Ross J, Ma-Wyatt A. Saccades actively maintain perceptual continuity. Nature Neuroscience. 2004 Jan;7(1):65. doi: 10.1038/nn1163 14661023
18. van Ee R. Dynamics of perceptual bi-stability for stereoscopic slant rivalry and a comparison with grating, house-face, and Necker cube rivalry. Vision Research. 2005 Jan 1;45(1):29–40. doi: 10.1016/j.visres.2004.07.039 15571736
19. Krug K, Brunskill E, Scarna A, Goodwin GM, Parker AJ. Perceptual switch rates with ambiguous structure-from-motion figures in bipolar disorder. Proc Biol Sci. 2008 Aug 22;275(1645):1839–48. doi: 10.1098/rspb.2008.0043 18463054
20. White PA. The three-second “subjective present”: A critical review and a new proposal. Psychol Bull. 2017 Jul;143(7):735–56. doi: 10.1037/bul0000104 28368147
21. Kanai R, Bahrami B, Rees G. Human Parietal Cortex Structure Predicts Individual Differences in Perceptual Rivalry. Current Biology. 2010 Sep 28;20(18):1626–30. doi: 10.1016/j.cub.2010.07.027 20727757
22. Shannon RW, Patrick CJ, Jiang Y, Bernat E, He S. Genes contribute to the switching dynamics of bistable perception. Journal of Vision. 2011 Mar 2;11(3):8–8. doi: 10.1167/11.3.8 21389101
23. Wexler M, Duyck M, Mamassian P. Persistent states in vision break universality and time invariance. Proc Natl Acad Sci USA. 2015 Dec 1;112(48):14990–5. doi: 10.1073/pnas.1508847112 26627250
24. Wexler M. Multidimensional internal dynamics underlying the perception of motion. J Vis. 2018 1;18(5):7. doi: 10.1167/18.5.7 29904782
25. van Ee R, van Dam LCJ, Brouwer GJ. Voluntary control and the dynamics of perceptual bi-stability. Vision Research. 2005 Jan 1;45(1):41–55. doi: 10.1016/j.visres.2004.07.030 15571737
26. van Dam LCJ, van Ee R. The role of saccades in exerting voluntary control in perceptual and binocular rivalry. Vision Research. 2006 Mar 1;46(6):787–99.
27. Nakatani H, Orlandi N, van Leeuwen C. Precisely timed oculomotor and parietal EEG activity in perceptual switching. Cogn Neurodyn. 2011 Nov;5(4):399–409. doi: 10.1007/s11571-011-9168-7 22184506
28. Einhäuser W, Martin KAC, König P. Are switches in perception of the Necker cube related to eye position? Eur J Neurosci. 2004 Nov;20(10):2811–8. doi: 10.1111/j.1460-9568.2004.03722.x 15548224
29. Scotto M. Smooth periodic eye movements can entrain perceptual alternation. Percept Mot Skills. 1991 Dec;73(3 Pt 1):835–43. doi: 10.2466/pms.1991.73.3.835 1792132
30. Hancock S, Gareze L, Findlay JM, Andrews TJ. Temporal patterns of saccadic eye movements predict individual variation in alternation rate during binocular rivalry. Iperception. 2012 Jan 27;3(1):88–96. doi: 10.1068/i0486 23145268
31. Meng M, Tong F. Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. J Vis. 2004 Jul 1;4(7):539–51. doi: 10.1167/4.7.2 15330700
32. Mathes B, Strüber D, Stadler MA, Basar-Eroglu C. Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neuroscience Letters. 2006 Jul 10;402(1):145–9.
33. Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10(4):433–6. 9176952
34. Witten IH, Frank E, Hall MA. Data Mining: Practical Machine Learning Tools and Techniques Ed. 4 [Internet]. Elsevier Science; 2016 [cited 2019 Jun 12].
35. Stoerig P. Varieties of vision: from blind responses to conscious recognition. Trends in Neurosciences. 1996 Jan;19(9):401–6. doi: 10.1016/S0166-2236(96)10051-5 8873358
36. Kornmeier J, Friedel Evelyn, Hecker L, Schmidt S, Wittmann M. What happens in the brain of meditators when perception changes but not the stimulus? PLoS One [Internet]. 2019 Oct 24 [cited 2019 Dec 17];14(10).
37. Logothetis NK. Single units and conscious vision. Philos Trans R Soc Lond B Biol Sci. 1998 Nov 29;353(1377):1801–18. doi: 10.1098/rstb.1998.0333 9854253
38. Grossberg S, Yazdanbakhsh A, Cao Y, Swaminathan G. How does binocular rivalry emerge from cortical mechanisms of 3-D vision? Vision Research. 2008 Sep 1;48(21):2232–50. doi: 10.1016/j.visres.2008.06.024 18640145
39. Leopold DA, Logothetis NK. Multistable phenomena: changing views in perception. Trends in Cognitive Sciences. 1999 Jul 1;3(7):254–64. doi: 10.1016/s1364-6613(99)01332-7 10377540
40. Pelton LH, Solley CM. Acceleration of Reversals of a Necker Cube. The American Journal of Psychology. 1968;81(4):585–8. 5760039
41. Strüber D, Stadler M. Differences in top-down influences on the reversal rate of different categories of reversible figures. Perception. 1999;28(10):1185–96. doi: 10.1068/p2973 10694967
42. Kornmeier J, Hein CM, Bach M. Multistable perception: when bottom-up and top-down coincide. Brain Cogn. 2009 Feb;69(1):138–47. doi: 10.1016/j.bandc.2008.06.005 18682314
43. Giersch A, Mishara AL. Is Schizophrenia a Disorder of Consciousness? Experimental and Phenomenological Support for Anomalous Unconscious Processing. Front Psychol [Internet]. 2017 [cited 2019 Apr 18];8.
44. Toppino TC, Long GM. Selective adaptation with reversible figures: Don’t change that channel. Perception & Psychophysics. 1987 Jan 1;42(1):37–48.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy