The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis
Autoři:
Marco Palanca aff001; Maria Luisa Ruspi aff001; Luca Cristofolini aff001; Christian Liebsch aff002; Tomaso Villa aff003; Marco Brayda-Bruno aff005; Fabio Galbusera aff004; Hans-Joachim Wilke aff002; Luigi La Barbera aff003
Působiště autorů:
Department of Industrial Engineering, School of Engineering and Architecture, Alma Mater Studiorum–Università di Bologna, Bologna, Italy
aff001; Institute of Orthopaedic Research and Biomechanics, Trauma Research Center Ulm (ZTF), University Hospital Ulm, Ulm, Germany
aff002; Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
aff003; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
aff004; Department of Spine Surgery III, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227210
Souhrn
The role of the ligaments is fundamental in determining the spine biomechanics in physiological and pathological conditions. The anterior longitudinal ligament (ALL) is fundamental in constraining motions especially in the sagittal plane. The ALL also confines the intervertebral discs, preventing herniation. The specific contribution of the ALL has indirectly been investigated in the past as a part of whole spine segments where the structural flexibility was measured. The mechanical properties of isolated ALL have been measured as well. The strain distribution in the ALL has never been measured under pseudo-physiological conditions, as part of multi-vertebra spine segments. This would help elucidate the biomechanical function of the ALL. The aim of this study was to investigate in depth the biomechanical function of the ALL in front of the lumbar vertebrae and of the intervertebral disc. Five lumbar cadaveric spine specimens were subjected to different loading scenarios (flexion-extension, lateral bending, axial torsion) using a state-of-the-art spine tester. The full-field strain distribution on the anterior surface was measured using digital image correlation (DIC) adapted and validated for application to spine segments. The measured strain maps were highly inhomogeneous: the ALL was generally more strained in front of the discs than in front of the vertebrae, with some locally higher strains both imputable to ligament fibers and related to local bony defects. The strain distributions were significantly different among the loading configurations, but also between opposite directions of loading (flexion vs. extension, right vs. left lateral bending, clockwise vs. counterclockwise torsion). This study allowed for the first time to assess the biomechanical behaviour of the anterior longitudinal ligament for the different loading of the spine. We were able to identify both the average trends, and the local effects related to osteophytes, a key feature indicative of spine degeneration.
Klíčová slova:
Bending – Biomechanics – Computed axial tomography – Ligaments – Mechanical properties – Spine – Vertebrae – Lumbar vertebrae
Zdroje
1. Gray H. Gray’s anatomy: the Anatomical Basis of Medicine and Surgery. Churchill-Livingstone, 2004
2. Mercer S, Bogduk N. The ligaments and annulus fibrosus of human adult cervical intervertebral discs. Spine. 1999. pp. 619–26; discussion 627–8. doi: 10.1097/00007632-199904010-00002 10209789
3. Robertson DJ, Von Forell GA, Alsup J, Bowden AE. Thoracolumbar spinal ligaments exhibit negative and transverse pre-strain. J Mech Behav Biomed Mater. Elsevier; 2013;23: 44–52. doi: 10.1016/j.jmbbm.2013.04.004 23660304
4. Rhalmi S, Yahia L, Newman N, Isler M. Immunohistochemical study of nerves in lumbar spine ligaments. Spine (Phila Pa 1976). 1993;18: 264–7.
5. Brandolini N, Cristofolini L, Viceconti M. Experimental Method for the Biomechanical Investigation of Human Spine: a Review. J Mech Med Biol. 2014;14: 1430002.
6. Wilke H-J, Rohlmann A, Neller S, Schulthei M, Bergmann G, Graichen F, et al. Is It Possible to Simulate Physiologic Loading Conditions by Applying Pure Moments?: A Comparison of In Vivo and In Vitro Load Components in an Internal Fixator. Spine (Phila Pa 1976). 2001;26: 636–642.
7. Oxland TR. Fundamental biomechanics of the spine—What we have learned in the past 25 years and future directions. J Biomech. 2016;49: 817–832. doi: 10.1016/j.jbiomech.2015.10.035 26706717
8. Lin HS, Liu YK, Adams KH. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Jt Surg Am. 1978;60: 41–55.
9. Kettler a, Wilke HJ, Haid C, Claes L. Effects of specimen length on the monosegmental motion behavior of the lumbar spine. Spine (Phila Pa 1976). 2000;25: 543–50. doi: 10.1097/00007632-200003010-00003 10749629
10. Busscher I, van Dieen JH, Kingma I, van der Veen AJ, Verkerke GJ, Veldhuizen AG. Biomechanical Characteristics of Different Regions of the Human Spine. Spine (Phila Pa 1976). 2009;34: 2858–2864.
11. Wilke HJ, Geppert J, Kienle A. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur Spine J. 2011;20: 1859–1868. doi: 10.1007/s00586-011-1822-6 21674213
12. Wilke HJ, Krischak ST, Wenger KH, Claes LE. Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J. 1997/01/01. 1997;6: 129–137. doi: 10.1007/BF01358746 9209882
13. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Jt Surg Am. 1994;76: 413–424.
14. Gardner-Morse MG, Stokes IAF. Structural behavior of human lumbar spinal motion segments. J Biomech. 2004;37: 205–212. doi: 10.1016/j.jbiomech.2003.10.003 14706323
15. Lysack JT, Dickey JP, Dumas GA, Yen D. A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens. J Biomech. 2000;33: 765–770. doi: 10.1016/s0021-9290(00)00021-x 10807999
16. Tkaczuk H. Tensile Properties of Human Lumbar Longitudinal Ligaments. Acta Orthop Scand. 1968;39: 1–69. doi: 10.3109/17453676808989433
17. Chazal J, Tanguy A, Bourges M, Gaurel G, Escande G, Guillot M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985;18: 167–176. doi: 10.1016/0021-9290(85)90202-7 3997901
18. Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances JA. Biomechanical Properties of Human Lumbar Spine Ligaments. J Biomech. 1992;25: 1351–1356. doi: 10.1016/0021-9290(92)90290-h 1400536
19. Panjabi MM, Goel VK, Takata K. Physiologic Strains in the lumbar spinal ligaments. An In Vitro Biomechanical Study. 1982;7: 192–203.
20. Neumann P, Ekström LA, Keller TS, Perry L, Hansson TH. Aging, vertebral density, and disc degeneration alter the tensile stress‐strain characteristics of the human anterior longitudinal ligament. J Orthop Res. 1994;12: 103–112. doi: 10.1002/jor.1100120113 8113932
21. Neumann P, Keller TS, Ekstrom L, Perry L, Hansson TH, Spengler DM. Mechanical Properties of the Human Lumbar Anterior Longitudinal Ligament. J Biomech. 1992;25: 1185–1194. doi: 10.1016/0021-9290(92)90074-b 1400518
22. Heuer F, Schmidt H, Wilke HJ. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech. 2008;41: 1953–1960. doi: 10.1016/j.jbiomech.2008.03.023 18501361
23. Heuer F, Schmidt H, Wilke HJ. The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading. J Biomech. 2008;41: 1086–1094. doi: 10.1016/j.jbiomech.2007.11.019 18187139
24. Palanca M, Tozzi G, Cristofolini L. The Use Of Digital Image Correlation In The BIomechanical Field: A Review. Inter Biomech. 2016; 3: 1–21. doi: 10.1080/23335432.2015.1117395
25. Palanca M, Marco M, Ruspi ML, Cristofolini L. Full-field strain distribution in multi-vertebra spine segments: an in-vitro application of DIC. Med Eng Phys. 2018;52: 76–83. doi: 10.1016/j.medengphy.2017.11.003 29229402
26. Palanca M, Barbanti-Bròdano G, Cristofolini L. The Size of Simulated Lytic Metastases Affects the Strain Distribution on the Anterior Surface of the Vertebra. J Biomech Eng. 2018;140: 111005. doi: 10.1115/1.4040587 30029268
27. Wilke HJ, Rohlmann F, Neidlinger-Wilke C, Werner K, Claes L, Kettler A. Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration: Part I. Lumbar spine. Eur Spine J. 2006;15: 720–730. doi: 10.1007/s00586-005-1029-9 16328226
28. Wilke HJ, Wenger K, Claes L. Testing criteria for spinal implants: recommentations for the standardardization of in vitro stability testing of spinal implants. Eur Spine J. 1998;7: 148–154. doi: 10.1007/s005860050045 9629939
29. Wilke HJ, Claes L, Schmitt H, Wolf S. A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J. 1994;3: 91–97. doi: 10.1007/bf02221446 7874556
30. Wilke H-J, Jungkunz B, Wenger K, Claes LE. Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec. 1998;251: 15–19. doi: 10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D 9605215
31. Sutton MA, Orteu JJ, Schreier HW. Image Correlation for Shape, Motion and Deformation Meaasurements. Springer Sci. 2009;
32. Lionello G, Cristofolini L. A practical approach to optimizing the preparation of speckle patterns for digital-image correlation. Meas Sci Technol. 2014;25: 107001. doi: 10.1088/0957-0233/25/10/107001
33. Palanca M, Brugo TMM, Cristofolini L. Use of Digital Image Correlation to Understand the Biomechanics of the Vertebra. J Mech Med Biol. 2015;15: 1540004–1540010. doi: 10.1142/S0219519415400047
34. Palanca M, Tozzi G, Cristofolini L. The use of digital image correlation in the biomechanical area: A review. Int Biomech. 2016;3: 1–21. doi: 10.1080/23335432.2015.1117395
35. Wilke H-J, Kettler A, Claes L E. Are sheep spines a valid biomechanical model for human spines? Spine 1997; 22 (20): 2365–2374 doi: 10.1097/00007632-199710150-00009 9355217
36. Tanaka N, An HS, Lim TH, Fujiwara A, Jeon CH, Haughton VM. The relationship between disc degeneration and flexibility of the lumbar spine. Spine J. 2001;1: 47–56. doi: 10.1016/s1529-9430(01)00006-7 14588368
37. Al-Rawahi M, Luo J, Pollintine P, Dolan P, Adams MA. Mechanical Function of Vertebral Body Osteophytes, as Revealed by Experiments on Cadaveric Spines. Spine (Phila Pa 1976). 2010; 30.
38. Heuer F, Schmidt H, Claes L, Wilke HJ. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech. 2007;40: 795–803. doi: 10.1016/j.jbiomech.2006.03.016 16712856
39. Costi JJ, Hearn TC, Fazzalari NL. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Clin Biomech. 2002;17: 446–455. doi: 10.1016/S0268-0033(02)00035-9
40. Dall’Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, et al. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro. J Biomech. Elsevier; 2010;43: 2374–2380. doi: 10.1016/j.jbiomech.2010.04.023 20462582
41. White III AA, Panjabi MM. Clinical Biomechanics of the Spine. Second Edi. Lippincott Williams & Wilkins; 1990.
42. Schmidt R, Obertacke U, Nothwang J, Ulrich C, Nowicki J, Reichel H, et al. The impact of implantation technique on frontal and sagittal alignment in total lumbar disc replacement: A comparison of anterior versus oblique implantation. Eur Spine J. 2010;19: 1534–1539. doi: 10.1007/s00586-010-1432-8 20490873
43. Heuer F, Wolfram U, Schmidt H, Wilke H-J. A method to obtain surface strains of soft tissues using a laser scanning device. J Biomech. 2008;41: 2402–2410. doi: 10.1016/j.jbiomech.2008.05.031 18621375
44. La Barbera L, Brayda-Bruno M, Liebsch C, Villa T, Luca A, Galbusera F, et al. Biomechanical advantages of supplemental accessory and satellite rods with and without interbody cages implantation for the stabilization of pedicle subtraction osteotomy. Eur Spine J. 2018;27: 2357–2366. doi: 10.1007/s00586-018-5623-z 29740675
45. Race A, Broom ND, Robertson P. Effect of loading rate and hydratation on the mechanical properties of the disc. Spine (Phila Pa 1976). 2000;25: 662–669.
46. Volkheimer D, Malakoutian M, Oxland TR, Wilke HJ. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur Spine J. 2015;24: 1882–1892. doi: 10.1007/s00586-015-4040-9 26038156
47. Rohlmann A, Neller S, Claes L, Bergmann G, Wilke HJ. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine (Phila Pa 1976). 2001/12/12. 2001;26: E557—61.
48. Sis HL, Mannen EM, Wong BM, Cadel ES, Bouxsein ML, Anderson DE, et al. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. J Biomech. 2016;49: 3252–3259. doi: 10.1016/j.jbiomech.2016.08.003 27545081
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy