PCR for the detection of pathogens in neonatal early onset sepsis
Autoři:
Clarissa Oeser aff001; Marcus Pond aff002; Philip Butcher aff002; Alison Bedford Russell aff003; Philipp Henneke aff004; Ken Laing aff002; Timothy Planche aff002; Paul T. Heath aff001; Kathryn Harris aff005
Působiště autorů:
Paediatric Infectious Diseases, Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom
aff001; Molecular Microbiology, Institute of Infection and Immunity, St George’s, University of London, London, United Kingdom
aff002; Neonatology, Birmingham Women's NHS Foundation Trust, Birmingham, United Kingdom
aff003; Pediatric Infectious Disease and Rheumatology, University Medical Center Freiburg, Freiburg, Germany
aff004; Microbiology, Virology and Infection Control, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
aff005
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226817
Souhrn
Background
A large proportion of neonates are treated for presumed bacterial sepsis with broad spectrum antibiotics even though their blood cultures subsequently show no growth. This study aimed to investigate PCR-based methods to identify pathogens not detected by conventional culture.
Methods
Whole blood samples of 208 neonates with suspected early onset sepsis were tested using a panel of multiplexed bacterial PCRs targeting Streptococcus pneumoniae, Streptococcus agalactiae (GBS), Staphylococcus aureus, Streptococcus pyogenes (GAS), Enterobacteriaceae, Enterococcus faecalis, Enterococcus faecium, Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis and Mycoplasma genitalium, a 16S rRNA gene broad-range PCR and a multiplexed PCR for Candida spp.
Results
Two-hundred and eight samples were processed. In five of those samples, organisms were detected by conventional culture; all of those were also identified by PCR. PCR detected bacteria in 91 (45%) of the 203 samples that did not show bacterial growth in culture. S. aureus, Enterobacteriaceae and S. pneumoniae were the most frequently detected pathogens. A higher bacterial load detected by PCR was correlated positively with the number of clinical signs at presentation.
Conclusion
Real-time PCR has the potential to be a valuable additional tool for the diagnosis of neonatal sepsis.
Klíčová slova:
Antibiotics – Bacterial pathogens – Blood – Enterobacteriaceae – Neonatal sepsis – Neonates – Pneumococcus – Polymerase chain reaction
Zdroje
1. Vergnano S, Menson E, Kennea N, Embleton N, Russell AB, Watts T, et al. Neonatal infections in England: the NeonIN surveillance network. Arch Dis Child Fetal Neonatal Ed. 2011; 96(1): p. F9–F14. doi: 10.1136/adc.2009.178798 20876594
2. Stocker M, Fontana M, El Helou S, Wegscheider K, Berger TM. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: prospective randomized intervention trial. Neonatology 2010; 97(2): p. 165–74. doi: 10.1159/000241296 19776651
3. Blackburn RM, Muller-Pebody B, Planche T, Johnson A, Hopkins S, Sharland M, et al. Neonatal sepsis—many blood samples, few positive cultures: implications for improving antibiotic prescribing. Arch Dis Child Fetal Neonatal Ed. 2012; 97(6): p. F487–8.
4. Wirtschafter DD, Padilla G, Suh O, Wan K, Trupp D, Fayard EE. Antibiotic use for presumed neonatally acquired infections far exceeds that for central line-associated blood stream infections: an exploratory critique. J Perinatol. 2011; 31(8): p. 514–8. doi: 10.1038/jp.2011.39 21546938
5. Patel SJ, Saiman L. Principles and strategies of antimicrobial stewardship in the neonatal intensive care unit. Semin Perinatol. 2012; 36(6): p. 431–6. doi: 10.1053/j.semperi.2012.06.005 23177802
6. Patel SJ, Saiman L. Antibiotic resistance in neonatal intensive care unit pathogens: mechanisms, clinical impact, and prevention including antibiotic stewardship. Clin Perinatol. 2010; 37(3): p. 547–63. doi: 10.1016/j.clp.2010.06.004 20813270
7. Macharashvili N, Kourbatova E, Butsashvili M, Tsertsvadze T, McNutt LA, Leonard MK. Etiology of neonatal blood stream infections in Tbilisi, Republic of Georgia. Int J Infect Dis. 2009; 13(4): p. 499–505. doi: 10.1016/j.ijid.2008.08.020 19058989
8. Yilmaz NO, Agus N, Helvaci M, Kose S, Ozer E, Sahbudak Z. Change in Pathogens Causing Late-onset Sepsis in Neonatal Intensive Care Unit in Izmir, Turkey. Iran J Pediatr. 2010; 20(4): p. 451–8. 23056745
9. Meropol SB, Edwards A. Development of the infant intestinal microbiome: A bird's eye view of a complex process. Birth Defects Research Part C Embryo Today Reviews 2015 105(4)
10. Cotten CM, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sánchez PJ, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009, 123(1): p. 58–66. doi: 10.1542/peds.2007-3423 19117861
11. Muller-Pebody B, Johnson AP, Heath PT, Gilbert RE, Henderson KL, Sharland M; iCAP Group. Empirical treatment of neonatal sepsis: are the current guidelines adequate? Arch Dis Child Fetal Neonatal Ed. 2011; 96(1): p. F4–8. doi: 10.1136/adc.2009.178483 20584804
12. Harris KA, Turner P, Green EA, Hartley JC. Duplex real-time PCR assay for detection of Streptococcus pneumoniae in clinical samples and determination of penicillin susceptibility. J Clin Microbiol. 2008; 46(8): p. 2751–8. doi: 10.1128/JCM.02462-07 18562586
13. Berseng H, Bevanger L, Rygg M, Bergh K. Real-time PCR targeting the sip gene for detection of group B Streptococcus colonization in pregnant women at delivery. J Med Microbiol. 2007 Feb;56(Pt 2):223–8. doi: 10.1099/jmm.0.46731-0 17244804
14. Tann C, Nkurunziza P, Nakakeeto M, Oweka J, Kurinczuk JJ, Were J et al. Prevalence of Bloodstream Pathogens Is Higher in Neonatal Encephalopathy Cases vs. Controls Using a Novel Panel of Real-Time PCR Assays. PLoS One. 2014; 9(5): e97259. doi: 10.1371/journal.pone.0097259 24836781
15. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD. Simultaneous species identification and detection of methicillin resistance in staphylococci using triplex real-time PCR assay. Diagn Microbiol Infect Dis. 2006 Sep;56(1):13–8 doi: 10.1016/j.diagmicrobio.2006.02.013 16650954
16. Mohn SC, Ulvik A, Jureen R, Willems RJ, Top J, Leavis H et al. Duplex real-time PCR assay for rapid detection of ampicillin-resistant Enterococcus faecium. Antimicrob Agents Chemother. 2004 Feb;48(2):556–60. doi: 10.1128/AAC.48.2.556-560.2004 14742209
17. Santo Domingo JW, Siefring SC, Haugland RA. Real-time PCR method to detect Enterococcus faecalis in water. Biotechnol Lett 2003 Feb;25(3):261–5. doi: 10.1023/a:1022303118122 12882582
18. Cao X, et al., Real-time TaqMan polymerase chain reaction assays for quantitative detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum. Diagn Microbiol Infect Dis, 2007. 57(4): p. 373–8. doi: 10.1016/j.diagmicrobio.2006.09.006 17141453
19. Jensen JS, Björnelius E, Dohn B, Lidbrink P. Use of TaqMan 5' nuclease real-time PCR for quantitative detection of Mycoplasma genitalium DNA in males with and without urethritis who were attendees at a sexually transmitted disease clinic. J Clin Microbiol, 2004. 42(2): p. 683–92. doi: 10.1128/JCM.42.2.683-692.2004 14766837
20. Ferandon C, Peuchant O, Janis C, Benard A, Renaudin H, Pereyre S, et al., Development of a real-time PCR targeting the yidC gene for the detection of Mycoplasma hominis and comparison with quantitative culture. Clin Microbiol Infect, 2011. 17(2): p. 155–9 doi: 10.1111/j.1469-0691.2010.03217.x 20298269
21. Harris KA, Hartley JC. Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J Med Microbiol. 2003; 52(Pt 8): p. 685–91. doi: 10.1099/jmm.0.05213-0 12867563
22. Innings A, Ullberg M, Johansson A, Rubin CJ, Noreus N, Isaksson M, et al. Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol. 2007; 45(3): p. 874–80. doi: 10.1128/JCM.01556-06 17215340
23. Pammi M, Flores A, Versalovic J, Leeflang MMG. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database of Systematic Reviews 2017; 2. CD011926. doi: 10.1002/14651858.CD011926.pub2 28236648
24. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-onset neonatal sepsis. Clin Microbiol Rev. 2014; 27(1): p. 21–47. doi: 10.1128/CMR.00031-13 24396135
25. Riemann K, Adamizik M, Frauenrath S, Egensperger R, Schmid KW, Brockenmeyer NH, et al. Comparison of manual and automated nucleic acid extraction from whole-blood samples. J Clin Lab Anal. 2007; 21(4): p. 244–8. doi: 10.1002/jcla.20174 17621359
26. Roder B, Fruhwirt K, Vogl C, Wagner M, Rossmanith P. Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J Clin Microbiol. 2010; 48(11): p. 4260–2. doi: 10.1128/JCM.01230-10 20810770
27. Ross KS, Haites NE, Kelly KF. Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity. J Med Genet. 1990; 27(9): p. 569–70. doi: 10.1136/jmg.27.9.569 2231649
28. Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006; 19(4): p. 788–802. doi: 10.1128/CMR.00062-05 17041144
29. Jimenez-Truque N, Tedeschi S, Saye EJ, McKenna BD, Langdon W, Wright JP, et al. Relationship between maternal and neonatal Staphylococcus aureus colonization. Pediatrics 2012; 129(5): p. e1252–9. doi: 10.1542/peds.2011-2308 22473373
30. Hoffman JA, Mason EO, Schutze GE, Tan TQ, Barson WJ, Givner LB, et al. Streptococcus pneumoniae infections in the neonate. Pediatrics 2003; 112(5): p. 1095–102. doi: 10.1542/peds.112.5.1095 14595052
31. Gomez M, Alter S, Kumar ML, Murphy S, Rathore MH. Neonatal Streptococcus pneumoniae infection: case reports and review of the literature. Pediatr Infect Dis J. 1999. 18(11): p. 1014–8. doi: 10.1097/00006454-199911000-00016 10571441
32. Simpson JM, Patel JS, Ispahani P. Streptococcus pneumoniae invasive disease in the neonatal period: an increasing problem? Eur J Pediatr.1995; 154(7): p. 563–6. doi: 10.1007/bf02074835 7556324
33. Rhodes PG, Burry VF, Hall RT, Cox R. Pneumococcal septicemia and meningitis in the neonate. J Pediatr.1975; 86(4): p. 593–5. doi: 10.1016/s0022-3476(75)80159-4 236367
34. Sallam A, Paes B. Streptococcus pneumoniae: an old bug with significant maternal-newborn implications. Am J Perinatol. 2004; 21(8): p. 491–5. doi: 10.1055/s-2004-835967 15580546
35. Petti CA, Woods CW, Reller LB. Streptococcus pneumoniae antigen test using positive blood culture bottles as an alternative method to diagnose pneumococcal bacteremia. J Clin Microbiol. 2005; 43(5): p. 2510–2. doi: 10.1128/JCM.43.5.2510-2512.2005 15872298
36. McNeeley DF, Saint-Louis F, Noel GJ. Neonatal enterococcal bacteremia: an increasingly frequent event with potentially untreatable pathogens. Pediatr Infect Dis J. 1996; 15(9): p. 800–5. doi: 10.1097/00006454-199609000-00013 8878225
37. Sherer CR, Sprague BM, Campos JM, Nambiar S, Temple R, Short B, et al. Characterizing vancomycin-resistant enterococci in neonatal intensive care. Emerg Infect Dis. 2005; 11(9): p. 1470–2. doi: 10.3201/eid1109.050148 16229786
38. Singh N, Léger MM, Campbell J, Short B, Campos JM. Control of vancomycin-resistant enterococci in the neonatal intensive care unit. Infect Control Hosp Epidemiol. 2005; 26(7): p. 646–9. doi: 10.1086/502595 16092746
39. Greenberg D, Leibovitz E, Shinnwell ES, Yagupsky P, Dagan R. Neonatal sepsis caused by Streptococcus pyogenes: resurgence of an old etiology? Pediatr Infect Dis J.1999; 18(5): p. 479–81. doi: 10.1097/00006454-199905000-00021 10353530
40. Waites KB, Katz B, Schelonka RL. Mycoplasmas and ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005; 18(4): p. 757–89. doi: 10.1128/CMR.18.4.757-789.2005 16223956
41. Yapicioglu H, Ozcan K, Sertdemir Y, Mutlu B, Satar M, Narli N, et al. Healthcare-associated infections in a neonatal intensive care unit in Turkey in 2008: incidence and risk factors, a prospective study. J Trop Pediatr. 2011; 57(3): p. 157–64. doi: 10.1093/tropej/fmq060 20601690
42. Ronnestad A, Abrahamsen TG, Medbø S, Reigstad H, Lossius K, Kaaresen PI, et al. Septicemia in the first week of life in a Norwegian national cohort of extremely premature infants. Pediatrics 2005; 115(3): p. e262–8. doi: 10.1542/peds.2004-1834 15687417
43. Olsen AL, Reinholdt J, Jensen AM, Andersen LP, Jensen ET. Nosocomial infection in a Danish Neonatal Intensive Care Unit: a prospective study. Acta Paediatr. 2009; 98(8): p. 1294–9. doi: 10.1111/j.1651-2227.2009.01322.x 19438843
44. Wojkowska-Mach J, Borszewska-Kornacka M, Domańska J, Gadzinowski J, Gulczyńska E, Helwich E, et al. Early-onset infections of very-low-birth-weight infants in Polish neonatal intensive care units. Pediatr Infect Dis J. 2012; 31(7): p. 691–5. doi: 10.1097/INF.0b013e3182567b74 22466319
45. Pammi M, Zhong D, Johnson Y, Revell P, Versalovic J. Polymicrobial bloodstream infections in the neonatal intensive care unit are associated with increased mortality: a case-control study. BMC Infect Dis. 2014; 14: p. 390. doi: 10.1186/1471-2334-14-390 25022748
46. Tsai MH, Chu SM, Hsu JF, Lien R, Huang HR, Chiang MC, et al. Polymicrobial bloodstream infection in neonates: microbiology, clinical characteristics, and risk factors. PLoS One 2014; 9(1): p. e83082. doi: 10.1371/journal.pone.0083082 24454692
47. Chiesa C, Panero A, Osborn JF, Simonetti AF, Pacifico L. Diagnosis of neonatal sepsis: a clinical and laboratory challenge. Clin Chem. 2004; 50(2): p. 279–87. doi: 10.1373/clinchem.2003.025171 14752012
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy