#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

How to detect a polytrauma patient at risk of complications: A validation and database analysis of four published scales


Autoři: Sascha Halvachizadeh aff001;  Larissa Baradaran aff001;  Paolo Cinelli aff001;  Roman Pfeifer aff001;  Kai Sprengel aff001;  Hans-Christoph Pape aff001
Působiště autorů: Department of Trauma, UniversitätsSpital Zürich, Zürich, Switzerland aff001;  Harald Tscherne Laboratory, Department of Trauma, University Zurich, University Hospital Zurich, Zurich, Switzerland aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0228082

Souhrn

Introduction

Early accurate assessment of the clinical status of severely injured patients is crucial for guiding the surgical treatment strategy. Several scales are available to differentiate between risk categories. They vary between expert recommendations and scores developed on the basis of patient data (level II). We compared four established scoring systems in regard to their predictive abilities for early (e.g., hemorrhage-induced mortality) versus late (Multiple Organ Failure (MOF), sepsis, late death) in-hospital complications.

Methods

A database from a level I trauma center was used. The inclusion criteria implied an injury severity score (ISS) of ≥16 points, primary admission, and a complete data set from admission to hospital-day 21. The following four scales were tested: the clinical grading scale (CGS; covers acidosis, shock, coagulation, and soft tissue injuries), the modified clinical grading scale (mCGS; covers CGS with modifications), the polytrauma grading score (PTGS; covers shock, coagulation, and ISS), and the early appropriate care protocol (EAC; covers acid–base changes). Admission values were selected from each scale and the following endpoints were compared: mortality, pneumonia, sepsis, death from hemorrhagic shock, and multiple organ failure.

Statistics

Shapiro-Wilk test for normal distribution, Pearson Chi square, odds ratios (OR) for all endpoints, 95% confidence intervals. Fitted, generalized linear models were used for prediction analysis. Krippendorff was used for comparison of CGS and mCGS. Alpha set at 0.05.

Results

In total, 3668 severely injured patients were included (mean age, 45.8±20 years; mean ISS, 28.2±15.1 points; incidence of pneumonia, 19.0%; incidence of sepsis, 14.9%; death from hem. shock, 4.1%; death from multiple organ failure (MOF), 1.9%; mortality rate, 26.8%). Our data show distinct differences in the prediction of complications, including mortality, for these scores (OR ranging from 0.5 to 9.1). The PTGS demonstrated the highest predictive value for any late complication (OR = 2.0), sepsis (OR = 2.6, p = 0.05), or pneumonia (OR = 2.0, p = 0.2). The EAC demonstrated good prediction for hemorrhage-induced early mortality (OR = 7.1, p<0.0001), but did not predict late complications (sepsis, OR = 0.8 and p = 0.52; pneumonia, OR = 1.1 and p = 0.7) CGS and mCGS are not comparable and should not be used interchangeably (Krippendorff α = 0.045).

Conclusion

Our data show that prediction of complications is more precise after using values that covers different physiological systems (coagulation, hemorrhage, acid–base changes, and soft tissue damage) when compared with using values of only one physiological system (e.g., acidosis). When acid–base changes alone were tested in terms of complications, they were predictive of complications within 72 hours but failed to predict late complications. These findings should be considered when performing early assessment of trauma patients or for the development of new scores.

Klíčová slova:

Coagulopathy – Death rates – Hemorrhage – Pneumonia – Sepsis – Soft tissues – Surgical and invasive medical procedures – Traumatic injury


Zdroje

1. Regel G, Lobenhoffer P, Grotz M, Pape HC, Lehmann U, Tscherne H. Treatment results of patients with multiple trauma: an analysis of 3406 cases treated between 1972 and 1991 at a German Level I Trauma Center. J Trauma Acute Care Surg. 1995;38(1):70–8.

2. Domingues CA, Coimbra R, Poggetti RS, Nogueira LS, de Sousa RMC. New Trauma and Injury Severity Score (TRISS) adjustments for survival prediction. World J Emerg Surg. 2018;13:12. Epub 2018/03/06. doi: 10.1186/s13017-018-0171-8 29541155.

3. Eichelberger MR, Bowman LM, Sacco WJ, Mangubat EA, Lowenstein AD, Gotschall CS. Trauma score versus revised trauma score in TRISS to predict outcome in children with blunt trauma. Annals of emergency medicine. 1989;18(9):939–42. doi: 10.1016/s0196-0644(89)80457-3 2764326

4. Napolitano LM, Fulda GJ, Davis KA, Ashley DW, Friese R, Van Way CW III, et al. Challenging issues in surgical critical care, trauma, and acute care surgery: a report from the Critical Care Committee of the American Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2010;69(6):1619–33.

5. Moore FA, Moore EE, Sauaia A. Blood transfusion: an independent risk factor for postinjury multiple organ failure. Archives of Surgery. 1997;132(6):620–5. 9197854

6. Dezman ZDW, Comer AC, Smith GS, Narayan M, Scalea TM, Hirshon JM. Failure to clear elevated lactate predicts 24-hour mortality in trauma patients. J Trauma Acute Care Surg. 2015;79(4):580–5. doi: 10.1097/TA.0000000000000810 26402531

7. Dezman ZDW, Corner AC, Smith GS, Hu PF, Mackenzie CF, Scalea TM, et al. Repeat lactate level predicts mortality better than rate of clearance. Am J Emerg Med. 2018;36(11):2005–9. doi: 10.1016/j.ajem.2018.03.012 29544906

8. Moore EE, Moore HB, Chapman MP, Gonzalez E, Sauaia A. Goal-directed hemostatic resuscitation for trauma induced coagulopathy: Maintaining homeostasis. J Trauma Acute Care Surg. 2018;84:S35–S40. doi: 10.1097/TA.0000000000001797 29334568

9. Moore HB, Moore EE, Liras IN, Wade C, Huebner BR, Burlew CC, et al. Targeting resuscitation to normalization of coagulating status: Hyper and hypocoagulability after severe injury are both associated with increased mortality. Am J Surg. 2017;214(6):1041–5. doi: 10.1016/j.amjsurg.2017.08.036 28969894

10. Kobbe P, Vodovotz Y, Kaczorowski DJ, Mollen KP, Billiar TR, Pape HC. Patterns of cytokine release and evolution of remote organ dysfunction after bilateral femur fracture. Shock. 2008;30(1):43–7. doi: 10.1097/SHK.0b013e31815d190b 18562923

11. Kobbe P, Vodovotz Y, Kaczorowski DJ, Billiar TR, Pape HC. The role of fracture-associated soft tissue injury in the induction of systemic inflammation and remote organ dysfunction after bilateral femur fracture. Journal of Orthopaedic Trauma. 2008;22(6):385–90. doi: 10.1097/BOT.0b013e318175dd88 18594302

12. Stein P, Kaserer A, Sprengel K, Wanner G, Seifert B, Theusinger O, et al. Change of transfusion and treatment paradigm in major trauma patients. Anaesthesia. 2017;72(11):1317–26. doi: 10.1111/anae.13920 28542848

13. Billeter A, Turina M, Seifert B, Mica L, Stocker R, Keel M. Early Serum Procalcitonin, Interleukin-6, and 24-Hour Lactate Clearance: Useful Indicators of Septic Infections in Severely Traumatized Patients. World Journal of Surgery. 2009;33(3):558–66. doi: 10.1007/s00268-008-9896-y 19148699

14. Mica L, Rufibach K, Keel M, Trentz O. The risk of early mortality of polytrauma patients associated to ISS, NISS, APACHE II values and prothrombin time. Journal of trauma management & outcomes. 2013;7(1):6.

15. Mica L, Furrer E, Keel M, Trentz O. Predictive ability of the ISS, NISS, and APACHE II score for SIRS and sepsis in polytrauma patients. Eur J Trauma Emerg Surg. 2012;38(6):665–71. doi: 10.1007/s00068-012-0227-5 26814554

16. Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14(3):187–96. 4814394.

17. Pape HC, Lefering R, Butcher N, Peitzman A, Leenen L, Marzi I, et al. The definition of polytrauma revisited: An international consensus process and proposal of the new ‘Berlin definition’. J Trauma Acute Care Surg. 2014;77(5):780–6. doi: 10.1097/TA.0000000000000453 25494433

18. Pape HC, Remmers D, Rice J, Ebisch M, Krettek C, Tscherne H. Appraisal of early evaluation of blunt chest trauma: development of a standardized scoring system for initial clinical decision making. J Trauma. 2000;49(3):496–504. doi: 10.1097/00005373-200009000-00018 11003329.

19. Moore EE, Shackford, Pachter HL, McAninch JW, Browner BD, Champion HR, et al. Organ injury scaling: spleen, liver, and kidney. The Journal of trauma. 1989;29(12):1664–6. 2593197

20. Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. The Lancet. 1974;304(7872):81–4.

21. Dienstknecht T, Rixen D, Giannoudis P, Pape HC, Grp ES. Do Parameters Used to Clear Noncritically Injured Polytrauma Patients for Extremity Surgery Predict Complications? Clinical Orthopaedics and Related Research. 2013;471(9):2878–84. doi: 10.1007/s11999-013-2924-8 23512748

22. Ogura T, Nakamura Y, Nakano M, Izawa Y, Nakamura M, Fujizuka K, et al. Predicting the need for massive transfusion in trauma patients: the Traumatic Bleeding Severity Score. J Trauma Acute Care Surg. 2014;76(5):1243–50. doi: 10.1097/TA.0000000000000200 24747455.

23. Nahm NJ, Moore TA, Vallier HA. Use of two grading systems in determining risks associated with timing of fracture fixation. J Trauma Acute Care Surg. 2014;77(2):268–79. doi: 10.1097/TA.0000000000000283 25058253.

24. Pape H-C, Giannoudis PV, Krettek C, Trentz O. Timing of fixation of major fractures in blunt polytrauma: role of conventional indicators in clinical decision making. Journal of orthopaedic trauma. 2005;19(8):551–62. doi: 10.1097/01.bot.0000161712.87129.80 16118563

25. Hildebrand F, Lefering R, Andruszkow H, Zelle BA, Barkatali BM, Pape HC. Development of a scoring system based on conventional parameters to assess polytrauma patients: PolyTrauma Grading Score (PTGS). Injury. 2015;46 Suppl 4:S93–8. doi: 10.1016/S0020-1383(15)30025-5 26542873.

26. Pape HC, Barkati B, Andruszkow H. Issues regarding patient assessment scores that focus on acid base changes in fracture patients. J Trauma Acute Care Surg. 2016;80(5):838. doi: 10.1097/TA.0000000000000990 26885991.

27. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992;101(6):1644–55. doi: 10.1378/chest.101.6.1644 1303622

28. Force ADT, Ranieri V, Rubenfeld G. Acute respiratory distress syndrome. Jama. 2012;307(23):2526–33. doi: 10.1001/jama.2012.5669 22797452

29. Pape HC, Remmers D, Grotz M, Schedel I, von Glinski S, Oberbeck R, et al. Levels of antibodies to endotoxin and cytokine release in patients with severe trauma: Does posttraumatic dysergy contribute to organ failure? J Trauma-Injury Infect Crit Care. 1999;46(5):907–13. doi: 10.1097/00005373-199905000-00022 10338411

30. Moore EE, Moore FA. American Association for the Surgery of Trauma Organ Injury Scaling: 50th Anniversary Review Article of the Journal of Trauma. J Trauma-Injury Infect Crit Care. 2010;69(6):1600–1. doi: 10.1097/TA.0b013e318201124e 21150537

31. Toroyan T. Global status report on road safety. Inj Prev. 2009;15(4):286-. doi: 10.1136/ip.2009.023697 19652008

32. Toroyan T, Peden MM, Iaych K. WHO launches second global status report on road safety. Inj Prev. 2013;19(2):150-. doi: 10.1136/injuryprev-2013-040775 23513037

33. Celso B, Tepas J, Langland-Orban B, Pracht E, Papa L, Lottenberg L, et al. A systematic review and meta-analysis comparing outcome of severely injured patients treated in trauma centers following the establishment of trauma systems. J Trauma. 2006;60(2):371–8; discussion 8. doi: 10.1097/01.ta.0000197916.99629.eb 16508498.

34. Flohé S, Lögters T. Grundlagen der Schwerverletztenversorgung, Epidemiologie. Management des Schwerverletzten: Springer; 2018. p. 3–9.

35. Paffrath T, Lefering R, Flohé S, DGU T. How to define severely injured patients?—An Injury Severity Score (ISS) based approach alone is not sufficient. Injury. 2014;45:S64–S9.

36. Lefering R, Huber-Wagner S, Nienaber U, Maegele M, Bouillon B. Update of the trauma risk adjustment model of the TraumaRegister DGU™: the Revised Injury Severity Classification, version II. Critical care. 2014;18(5):476. doi: 10.1186/s13054-014-0476-2 25394596

37. Pape HC, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg. 2002;183(6):622–9. doi: 10.1016/s0002-9610(02)00865-6 12095590

38. Vallier HA, Wang X, Moore TA, Wilber JH, Como JJ. Timing of orthopaedic surgery in multiple trauma patients: development of a protocol for early appropriate care. Journal of orthopaedic trauma. 2013;27(10):543–51. doi: 10.1097/BOT.0b013e31829efda1 23760182

39. Joseph B, Khan M, Truitt M, Jehan F, Kulvatunyou N, Azim A, et al. Massive transfusion: the revised assessment of bleeding and transfusion (RABT) score. World journal of surgery. 2018;42(11):3560–7. doi: 10.1007/s00268-018-4674-y 29785693

40. Spahn DR. TEG®- or ROTEM®-based individualized goal-directed coagulation algorithms: don’t wait—act now! Crit Care. 2014;18(6):637. Epub 2014/11/24. doi: 10.1186/s13054-014-0637-3 25672839.

41. Theusinger OM, Baulig W, Seifert B, Müller SM, Mariotti S, Spahn DR. Changes in coagulation in standard laboratory tests and ROTEM in trauma patients between on-scene and arrival in the emergency department. Anesth Analg. 2015;120(3):627–35. doi: 10.1213/ANE.0000000000000561 25545751.

42. Theusinger OM, Schroder CM, Eismon J, Emmert MY, Seifert B, Spahn DR, et al. The Influence of Laboratory Coagulation Tests and Clotting Factor Levels on Rotation Thromboelastometry (ROTEM (R)) During Major Surgery with Hemorrhage. Anesth Analg. 2013;117(2):314–21. doi: 10.1213/ANE.0b013e31829569ac 23780419

43. O’Toole RV, O’Brien M, Scalea TM, Habashi N, Pollak AN, Turen CH. Resuscitation before stabilization of femoral fractures limits acute respiratory distress syndrome in patients with multiple traumatic injuries despite low use of damage control orthopedics. J Trauma Acute Care Surg. 2009;67(5):1013–21.

44. Pape HC, Andruszkow H, Pfeifer R, Hildebrand F, Barkatali BM. Options and hazards of the early appropriate care protocol for trauma patients with major fractures: Towards safe definitive surgery. Injury-Int J Care Inj. 2016;47(4):787–91. doi: 10.1016/j.injury.2016.03.020 27090109

45. Kutcher ME, Howard BM, Sperry JL, Hubbard AE, Decker AL, Cuschieri J, et al. Evolving beyond the vicious triad: differential mediation of traumatic coagulopathy by injury, shock, and resuscitation. J Trauma Acute Care Surg. 2015;78(3):516–23. doi: 10.1097/TA.0000000000000545 25710421

46. Kaserer A, Rössler J, Braun J, Farokhzad F, Pape HC, Dutkowski P, et al. Impact of a Patient Blood Management monitoring and feedback programme on allogeneic blood transfusions and related costs. 2019.

47. Pape H, Andruszkow H, Pfeifer R, Hildebrand F, Barkatali B. Options and hazards of the early appropriate care protocol for trauma patients with major fractures: towards safe definitive surgery. Injury. 2016;47(4):787–91. doi: 10.1016/j.injury.2016.03.020 27090109

48. Kunitake RC, Howard BM, Kornblith LZ, Christie SA, Conroy AS, Cohen MJ, et al. Individual clotting factor contributions to mortality following trauma. The journal of trauma and acute care surgery. 2017;82(2):302. doi: 10.1097/TA.0000000000001313 27906868

49. Sauaia A, Moore EE, Johnson JL, Chin TL, Banerjee A, Sperry JL, et al. Temporal trends of postinjury multiple-organ failure: still resource intensive, morbid, and lethal. The journal of trauma and acute care surgery. 2014;76(3):582. doi: 10.1097/TA.0000000000000147 24553523

50. Pfeifer R, Kobbe P, Darwiche SS, Billiar TR, Pape HC. Role of Hemorrhage in the Induction of Systemic Inflammation and Remote Organ Damage: Analysis of Combined Pseudo-Fracture and Hemorrhagic Shock. Journal of Orthopaedic Research. 2011;29(2):270–4. doi: 10.1002/jor.21214 20690183

51. Pfeifer R, Andruszkow JHK, Busch D, Hoepken M, Barkatali BM, Horst K, et al. Development of a standardized trauma-related lung injury model. Journal of Surgical Research. 2015;196(2):388–94. doi: 10.1016/j.jss.2015.03.038 25881786

52. Menzel CL, Pfeifer R, Darwiche SS, Kobbe P, Gill R, Shapiro RA, et al. Models of Lower Extremity Damage in Mice: Time Course of Organ Damage and Immune Response. Journal of Surgical Research. 2011;166(2):E149–E56. doi: 10.1016/j.jss.2010.11.914 21276982

53. Hildebrand F, Andruszkow H, Barkatali BM, Pfeifer R, Lichte P, Kobbe P, et al. Animal models to assess the local and systemic effects of nailing: review of the literature and considerations for future studies. J Trauma Acute Care Surg. 2014;76(6):1495–506. doi: 10.1097/TA.0000000000000236 24854321.

54. Benns M, Carr B, Kallan MJ, Sims CA. Benchmarking the incidence of organ failure after injury at trauma centers and nontrauma centers in the United States. J Trauma Acute Care Surg. 2013;75(3):426–31. doi: 10.1097/TA.0b013e31829cfa19 24089112.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#