Geographical origin determines responses to salinity of Mediterranean caddisflies
Autoři:
Mauricio J. Carter aff001; Matías Flores aff002; Rodrigo Ramos-Jiliberto aff003
Působiště autorů:
Universidad Andrés Bello, Facultad de Ciencias de la Vida, Santiago, Chile
aff001; Facultad de Ciencias, Universidad de Chile, Santiago, Chile
aff002; GEMA Center for Genomics, Ecology & Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago, Chile
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0220275
Souhrn
Many freshwater ecosystems worldwide, and particularly Mediterranean ones, show increasing levels of salinity. These changes in water conditions could affect abundance and distribution of inhabiting species as well as the provision of ecosystem services. In this study we conduct laboratory experiments using the macroinvertebrate Smicridea annulicornis as a model organism. Our factorial experiments were designed to evaluate the effects of geographical origin of organisms and salinity levels on survival and behavioral responses of caddisflies. The experimental organisms were captured from rivers belonging to three hydrological basins along a 450 Km latitudinal gradient in the Mediterranean region of Chile. Animals were exposed to three conductivity levels, from 180 to 1400 μS/cm, close to the historical averages of the source rivers. We measured the behavioral responses to experimental stimuli and the survival time. Our results showed that geographical origin shaped the behavioral and survival responses to salinity. In particular, survival and activity decreased more strongly with increasing salinity in organisms coming from more dilute waters. This suggests local adaptation to be determinant for salinity responses in this benthic invertebrate species. In the current scenario of fast temporal and spatial changes in water levels and salt concentration, the conservation of geographic intra-specific variation of aquatic species is crucial for lowering the risk of salinity-driven biodiversity loss.
Klíčová slova:
Behavior – Electric conductivity – Fresh water – Chile (country) – Physiological parameters – Rivers – Salinity – Surface water
Zdroje
1. Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz CJ. Salinisation of rivers: An urgent ecological issue. Environmental Pollution. 2013;173:157–167. doi: 10.1016/j.envpol.2012.10.011 23202646
2. Cañedo-Argüelles M, Kefford BJ, Schäfer RB. Salt in freshwaters: Causes, effects and prospects—Introduction to the theme issue. Philosophical Transactions of the Royal Society B: Biological Sciences. 2019;374:20180002. doi: 10.1098/rstb.2018.0002
3. Kefford BJ, Nugegoda D, Zalizniak L, Fields EJ, Hassell KL. The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages: A diversity of responses. Aquatic Ecology. 2007;41(2):335–348. doi: 10.1007/s10452-006-9066-y
4. Pizarro J, Vergara PM, Rodríguez JA, Valenzuela AM. Heavy metals in northern Chilean rivers: Spatial variation and temporal trends. Journal of Hazardous Materials. 2010;181(1-3):747–754. doi: 10.1016/j.jhazmat.2010.05.076 20541865
5. Conti L, Schmidt-Kloiber A, Grenouillet G, Graf W. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia. 2014;721(1):297–315. doi: 10.1007/s10750-013-1690-7
6. Pond GJ, Passmore ME, Pointon ND, Felbinger JK, Walker CA, Krock KJG, et al. Long-Term Impacts on Macroinvertebrates Downstream of Reclaimed Mountaintop Mining Valley Fills in Central Appalachia. Environmental Management. 2014;54(4):919–933. doi: 10.1007/s00267-014-0319-6 24990807
7. Clements WH, Kotalik C. Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. Freshwater Science. 2016;35(1):126–138. doi: 10.1086/685085
8. Kaushal SS, Likens GE, Pace ML, Utz RM, Haq S, Gorman J, et al. Freshwater salinization syndrome on a continental scale. Proceedings of the National Academy of Sciences. 2018. doi: 10.1073/pnas.1711234115
9. Berger E, Frör O, Schäfer RB. Salinity impacts on river ecosystem processes: a critical mini-review. Philosophical Transactions of the Royal Society B. 2018;374(1764):20180010. doi: 10.1098/rstb.2018.0010
10. Griffith MB. Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous USA. Freshwater Science. 2014;33(1):1–17. doi: 10.1086/674704
11. Griffith MB. Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: Teleost fish, Crustacea, Aquatic Insects, and Mollusca. Environmental Toxicology and Chemistry. 2017;36(3):576–600. doi: 10.1002/etc.3676 27808448
12. Zalizniak L, Kefford BJ, Nugegoda D. Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates. Marine And Freshwater Research. 2006;57:126–138. doi: 10.1071/MF05103
13. Jannot BE Jason E, Wissinger SA. Effects of larval energetic resources on life history and adult allocation patterns in a caddisfly (Trichoptera: Phryganeidae). Ecological Entomology. 2007;32(4):376–383. doi: 10.1111/j.1365-2311.2007.00876.x
14. Statzner B, Bêche LA. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology. 2010;55(Supplement 1):80–119. doi: 10.1111/j.1365-2427.2009.02369.x
15. Dunlop JE, Mann RM, Hobbs D, Smith REW, Nanjappa V, Vardy S, et al. Assessing the toxicity of saline waters: the importance of accommodating surface water ionic composition at the river basin scale. Australasian Bulletin of Ecotoxicology and Environmental Chemistry. 2015;2:1–15.
16. Mount DR, Erickson RJ, Highland TL, Hockett JR, Hoff DJ, Jenson CT, et al. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry. Environmental Toxicology and Chemistry. 2016;35(12):3039–3057. doi: 10.1002/etc.3487 27167636
17. Suárez ML, Sánchez-Montoya MM, Gómez R, Arce MI, del Campo R, Vidal-Abarca MR. Functional response of aquatic invertebrate communities along two natural stress gradients (water salinity and flow intermittence) in Mediterranean streams. Aquatic Sciences. 2017;19:1–12.
18. Cormier SM, Zheng L, Flaherty CM. A field-based model of the relationship between extirpation of salt-intolerant benthic invertebrates and background conductivity. Science of the Total Environment. 2018;633:1629–1636. doi: 10.1016/j.scitotenv.2018.02.044 29477563
19. Dallas HF. Ecological status assessment in mediterranean rivers: complexities and challenges in developing tools for assessing ecological status and defining reference conditions. Hydrobiologia. 2013;719(1):483–507. doi: 10.1007/s10750-012-1305-8
20. Figueroa R, Palma A, Ruiz V, Niell X. Comparative analysis of biotic indexes used to evaluate water quality in a Mediterranean river of Chile: Chillán River, VIII Region. Revista Chilena de Historia Natural. 2007;80(2):225–242.
21. Figueroa R, Bonada N, Guevara M, Pedreros P, Correa-Araneda F, Díaz ME, et al. Freshwater biodiversity and conservation in mediterranean climate streams of Chile. Hydrobiologia. 2013;719(1):269–289. doi: 10.1007/s10750-013-1685-4
22. Peredo-Parada M, Martínez-Capel F, Garófano-Gomez V, Atenas M, Riestra F. Base de datos Eco-hidrologica de los ríos de Chile: Una herramienta de gestión para los ecosistemas acuáticos. Gayana (Concepción). 2009;73(1).
23. Pizarro J, Vergara PM, Rodríguez JA, Sanhueza PA, Castro SA. Nutrients dynamics in the main river basins of the centre-southern region of Chile. Journal of Hazardous Materials. 2010;175(1-3):608–613. doi: 10.1016/j.jhazmat.2009.10.048 19926214
24. Marshall WS. Na-, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. Journal Experimental Zoology. 2002;283:264–283. doi: 10.1002/jez.10127
25. Kefford BJ. Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses. Philosophical Transactions of the Royal Society B: Biological Sciences. 2019;374:20180021. doi: 10.1098/rstb.2018.0021
26. Kefford BJ, Buchwalter D, Cañedo-Argüelles M, Davis J, Duncan RP, Hoffmann A, et al. Salinized rivers: Degraded systems or new habitats for salt-tolerant faunas? Biology Letters. 2016;12(3):1–7. doi: 10.1098/rsbl.2015.1072
27. Olson JR, Hawkins CP. Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates. Freshwater Biology. 2017;62(4):779–791. doi: 10.1111/fwb.12901
28. Pereira C, Lopes I, Abrantes I, Sousa J, Chelinho S. Salinization effects on coastal ecosystems: a terrestrial model ecosystem approach. Philosophical Transactions of the Royal Society B. 2018;374(1764):20180251. doi: 10.1098/rstb.2018.0251
29. Venâncio C, Castro B, Ribeiro R, Antunes S, Abrantes N, Soares A, et al. Sensitivity of freshwater species under single and multigenerational exposure to seawater intrusion. Philosophical Transactions of the Royal Society B. 2018;374(1764):20180252.
30. Leberfinger K, Bohman I, Hermnann J. Drought impact on stream detritivores: experimental effects on leaf litter breakdown and life cycles. Hydrobiologia. 2010;652(1):247–254. doi: 10.1007/s10750-010-0337-1
31. Sabando MC, Vila I, Peñaloza R, Véliz D. Contrasting population genetic structure of two widespread aquatic insects in the Chilean high-slope rivers. Marine and Freshwater Research. 2011;62(1):1. doi: 10.1071/MF10105
32. Falconer D, Mackay T, Bulmer M. Introduction to Quantitative Genetics; 1996.
33. Stoffel MA, Nakagawa S, Schielzeth H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution. 2017;8(11):1639–1644. doi: 10.1111/2041-210X.12797
34. Team RC, et al. R: A language and environment for statistical computing. 2017.
35. Kefford BJ, Papas PJ, Nugegoda D. Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research. 2003;54:755–765. doi: 10.1071/MF02081
36. Dunlop JE, Horrigan N, Mcgregor G, Kefford BJ, Choy S, Prasad R. Effect of spatial variation on salinity tolerance of macroinvertebrates in Eastern Australia and implications for ecosystem protection trigger values. Environmental Pollution. 2008;151:621–630. doi: 10.1016/j.envpol.2007.03.020 17583398
37. Céspedes V, Pallarés S, Arribas P, Millán A, Velasco J. Water beetle tolerance to salinity and anionic composition and its relationship to habitat occupancy. Journal of insect Physiology. 2013;59:1076–1084. doi: 10.1016/j.jinsphys.2013.08.006 23973816
38. Stoks R, Geerts AN, Meester LD. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential. Ecological Applications. 2014;7:42–55.
39. Szöcs E, Coring E, Bäthe J, Schäfer RB. Science of the Total Environment Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Science of the Total Environment. 2014;468-469:943–949. doi: 10.1016/j.scitotenv.2013.08.058 24080419
40. Dowse R, Palmer CG, Hills K, Torpy F, Kefford BJ. The mayfly nymph Austrophlebioides pusillus Harker defies common osmoregulatory assumptions. Royal Society Open Science. 2017;4:160520. doi: 10.1098/rsos.160520 28280549
41. Evans DH. Osmotic and ionic regulation: cells and animals. CRC Press; 2008.
42. Lee CE, Kiergaard M, Gelembiuk GW, Eads BD, Posavi M. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution: International Journal of Organic Evolution. 2011;65(8):2229–2244. doi: 10.1111/j.1558-5646.2011.01308.x
43. Nowghani F, Jonusaite S, Watson-Leung T, Donini A, Kelly SP. Strategies of ionoregulation in the freshwater nymph of the mayfly Hexagenia rigida. Journal of Experimental Biology. 2017;220(21):3997–4006. doi: 10.1242/jeb.166132 28860119
44. Nowghani F, Chen CC, Jonusaite S, Watson-Leung T, Kelly SP, Donini A. Impact of salt-contaminated freshwater on osmoregulation and tracheal gill function in nymphs of the mayfly Hexagenia rigida. Aquatic Toxicology. 2019;211:92–104. doi: 10.1016/j.aquatox.2019.03.019 30954848
45. Marshall WS. Na+, Cl-, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. Journal of experimental zoology. 2002;293(3):264–283. doi: 10.1002/jez.10127 12115901
46. Thabet R, Ayadi H, Koken M, Leignel V. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia. 2017;799(1):1–20. doi: 10.1007/s10750-017-3232-1
47. Kefford BJ. Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses. Philosophical Transactions of the Royal Society B. 2018;374(1764):20180021. doi: 10.1098/rstb.2018.0021
48. East JL, Wilcut C, Pease AA. Aquatic food-web structure along a salinized dryland river. Freshwater Biology. 2017;62:681–694. doi: 10.1111/fwb.12893
49. Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD. Trophic cascades across ecosystems. Nature. 2005;437(7060):880. doi: 10.1038/nature03962 16208370
50. Stewart RI, Andersson GK, Brönmark C, Klatt BK, Hansson LA, Zülsdorff V, et al. Ecosystem services across the aquatic—terrestrial boundary: Linking ponds to pollination. Basic and applied ecology. 2017;18:13–20. doi: 10.1016/j.baae.2016.09.006
51. Koel TM, Tronstad LM, Arnold JL, Gunther KA, Smith DW, Syslo JM, et al. Predatory fish invasion induces within and across ecosystem effects in Yellowstone National Park. Science advances. 2019;5(3):eaav1139. doi: 10.1126/sciadv.aav1139 30906863
52. Raitif J, Plantegenest M, Roussel JM. From stream to land: Ecosystem services provided by stream insects to agriculture. Agriculture, ecosystems & environment. 2019;270:32–40. doi: 10.1016/j.agee.2018.10.013
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy