Switchable resolution in soft x-ray tomography of single cells
Autoři:
Venera Weinhardt aff001; Jian-Hua Chen aff001; Axel A. Ekman aff001; Jessica Guo aff002; Soumya G. Remesh aff001; Michal Hammel aff001; Gerry McDermott aff001; Weilun Chao aff003; Sharon Oh aff003; Mark A. Le Gros aff001; Carolyn A. Larabell aff001
Působiště autorů:
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
aff001; Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
aff002; Center for X-ray Optics, Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227601
Souhrn
The diversity of living cells, in both size and internal complexity, calls for imaging methods with adaptable spatial resolution. Soft x-ray tomography (SXT) is a three-dimensional imaging technique ideally suited to visualizing and quantifying the internal organization of single cells of varying sizes in a near-native state. The achievable resolution of the soft x-ray microscope is largely determined by the objective lens, but switching between objectives is extremely time-consuming and typically undertaken only during microscope maintenance procedures. Since the resolution of the optic is inversely proportional to the depth of focus, an optic capable of imaging the thickest cells is routinely selected. This unnecessarily limits the achievable resolution in smaller cells and eliminates the ability to obtain high-resolution images of regions of interest in larger cells. Here, we describe developments to overcome this shortfall and allow selection of microscope optics best suited to the specimen characteristics and data requirements. We demonstrate that switchable objective capability advances the flexibility of SXT to enable imaging cells ranging in size from bacteria to yeast and mammalian cells without physically modifying the microscope, and we demonstrate the use of this technology to image the same specimen with both optics.
Klíčová slova:
B cells – Light microscopy – Optical lenses – Schizosaccharomyces pombe – Tomography – X-ray radiography – Yeast – X-ray microscopy
Zdroje
1. Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biological reviews. 2006;81(3):425–455. doi: 10.1017/S1464793106007068 16790079
2. Roy AL, Conroy R, Smith J, Yao Y, Beckel-Mitchener AC, Anderson JM, et al. Accelerating a paradigm shift: The Common Fund Single Cell Analysis Program. Science advances. 2018;4(8):eaat8573. doi: 10.1126/sciadv.aat8573
3. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nature methods. 2010;7(8):603. doi: 10.1038/nmeth.1483 20676081
4. Koster AJ, Klumperman J. Electron microscopy in cell biology: integrating structure and function. Nature Reviews Molecular Cell Biology. 2003;4(9; SUPP):SS6–SS9.
5. Villa E, Schaffer M, Plitzko JM, Baumeister W. Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Current opinion in structural biology. 2013;23(5):771–777. doi: 10.1016/j.sbi.2013.08.006 24090931
6. Jacobsen C. Soft x-ray microscopy. Trends in cell biology. 1999;9(2):44–47. doi: 10.1016/s0962-8924(98)01424-x 10087616
7. Bower AJ, Chidester B, Li J, Zhao Y, Marjanovic M, Chaney EJ, et al. A quantitative framework for the analysis of multimodal optical microscopy images. Quantitative imaging in medicine and surgery. 2017;7(1):24. doi: 10.21037/qims.2017.02.07 28275557
8. Toda K, Tamamitsu M, Nagashima Y, Horisaki R, Ideguchi T. Molecular contrast on phase-contrast microscope. Scientific reports. 2019;9(1):9957. doi: 10.1038/s41598-019-46383-6 31316091
9. Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Optics letters. 2005;30(5):468–470. doi: 10.1364/ol.30.000468 15789705
10. Thorn K. A quick guide to light microscopy in cell biology. Molecular biology of the cell. 2016;27(2):219–222. doi: 10.1091/mbc.E15-02-0088 26768859
11. Ryan J, Gerhold AR, Boudreau V, Smith L, Maddox PS. Introduction to modern methods in light microscopy. In: Light Microscopy. Springer; 2017. p. 1–15.
12. Holgate J, Webb J. MICROSCOPY—Light Microscopy and Histochemical Methods. 2003.
13. Carzaniga R, Domart MC, Collinson LM, Duke E. Cryo-soft X-ray tomography: a journey into the world of the native-state cell. Protoplasma. 2014;251(2):449–458. doi: 10.1007/s00709-013-0583-y 24264466
14. McDermott G, Fox DM, Epperly L, Wetzler M, Barron AE, Le Gros MA, et al. Visualizing and quantifying cell phenotype using soft X-ray tomography. Bioessays. 2012;34(4):320–327. doi: 10.1002/bies.201100125 22290620
15. Harkiolaki M, Darrow MC, Spink MC, Kosior E, Dent K, Duke E. Cryo-soft X-ray tomography: using soft X-rays to explore the ultrastructure of whole cells. Emerging Topics in Life Sciences. 2018;2(1):81–92. doi: 10.1042/ETLS20170086
16. Weinhardt V, Chen JH, Ekman A, McDermott G, Le Gros MA, Larabell C. Imaging cell morphology and physiology using X-rays. Biochemical Society Transactions. 2019;47(2):489–508. doi: 10.1042/BST20180036 30952801
17. Le Gros MA, Clowney EJ, Magklara A, Yen A, Markenscoff-Papadimitriou E, Colquitt B, et al. Soft X-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo. Cell reports. 2016;17(8):2125–2136. doi: 10.1016/j.celrep.2016.10.060 27851973
18. Hanssen E, Knoechel C, Klonis N, Abu-Bakar N, Deed S, LeGros M, et al. Cryo transmission X-ray imaging of the malaria parasite, P. falciparum. Journal of structural biology. 2011;173(1):161–168. doi: 10.1016/j.jsb.2010.08.013 20826218
19. McDermott G, Le Gros MA, Knoechel CG, Uchida M, Larabell CA. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends in cell biology. 2009;19(11):587–595. doi: 10.1016/j.tcb.2009.08.005 19818625
20. Uchida M, Sun Y, McDermott G, Knoechel C, Le Gros MA, Parkinson D, et al. Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast. 2011;28(3):227–236. doi: 10.1002/yea.1834 21360734
21. Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, Otto O, et al. Real-time fluorescence and deformability cytometry. Nature methods. 2018;15(5):355. doi: 10.1038/nmeth.4639 29608556
22. Mueller P. Optical Diffraction Tomography for Single Cells. Saechsische Landesbibliothek-Staats-und Universitaetsbibliothek Dresden; 2016.
23. Taylor DL. Past, present, and future of high content screening and the field of cellomics. In: High Content Screening. Springer; 2007. p. 3–18.
24. Garbacik ET, Sanz-Paz M, Borgman KJ, Campelo F, Garcia-Parajo MF. Frequency-encoded multicolor fluorescence imaging with single-photon-counting color-blind detection. Biophysical journal. 2018;115(4):725–736. doi: 10.1016/j.bpj.2018.07.008 30037496
25. Chung JH, Kim HM. The nobel prize in chemistry 2017: high-resolution cryo-electron microscopy. Applied Microscopy. 2017;47(4):218–222. doi: 10.9729/AM.2017.47.4.218
26. Kornfeld J, Denk W. Progress and remaining challenges in high-throughput volume electron microscopy. Current opinion in neurobiology. 2018;50:261–267. doi: 10.1016/j.conb.2018.04.030 29758457
27. Chiappi M, Conesa JJ, Pereiro E, Sorzano COS, Rodríguez MJ, Henzler K, et al. Cryo-soft X-ray tomography as a quantitative three-dimensional tool to model nanoparticle: cell interaction. Journal of nanobiotechnology. 2016;14(1):15. doi: 10.1186/s12951-016-0170-4 26939942
28. Schneider G, Guttmann P, Heim S, Rehbein S, Mueller F, Nagashima K, et al. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nature methods. 2010;7(12):985. doi: 10.1038/nmeth.1533 21076419
29. Müller WG, Heymann JB, Nagashima K, Guttmann P, Werner S, Rehbein S, et al. Towards an atlas of mammalian cell ultrastructure by cryo soft X-ray tomography. Journal of structural biology. 2012;177(2):179–192. doi: 10.1016/j.jsb.2011.11.025 22155291
30. Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft x-ray imaging at 10 nm spatial resolution. Optics express. 2012;20(9):9777–9783. doi: 10.1364/OE.20.009777 22535070
31. Rehbein S, Heim S, Guttmann P, Werner S, Schneider G. Ultrahigh-resolution soft-X-ray microscopy with zone plates in high orders of diffraction. Physical review letters. 2009;103(11):110801. doi: 10.1103/PhysRevLett.103.110801 19792359
32. Groen J, Conesa J, Valcárcel R, Pereiro E. The cellular landscape by cryo soft X-ray tomography. Biophysical reviews. 2019; p. 1–9.
33. Guo J, Larabell CA. Soft X-ray tomography: virtual sculptures from cell cultures. Current opinion in structural biology. 2019. doi: 10.1016/j.sbi.2019.06.012 31495562
34. Anderson EH, Olynick DL, Harteneck B, Veklerov E, Denbeaux G, Chao W, et al. Nanofabrication and diffractive optics for high-resolution x-ray applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2000;18(6):2970–2975. doi: 10.1116/1.1321282
35. Parkinson DY, Epperly LR, McDermott G, Le Gros MA, Boudreau RM, Larabell CA. Nanoimaging cells using soft X-ray tomography. In: Nanoimaging. Springer; 2013. p. 457–481.
36. Le Gros MA, McDermott G, Cinquin BP, Smith EA, Do M, Chao WL, et al. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source. Journal of synchrotron radiation. 2014;21(6):1370–1377. doi: 10.1107/S1600577514015033 25343808
37. Weiss D, Schneider G, Niemann B, Guttmann P, Rudolph D, Schmahl G. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy. 2000;84(3-4):185–197. doi: 10.1016/s0304-3991(00)00034-6 10945329
38. Parkinson DY, Knoechel C, Yang C, Larabell CA, Le Gros MA. Automatic alignment and reconstruction of images for soft X-ray tomography. Journal of structural biology. 2012;177(2):259–266. doi: 10.1016/j.jsb.2011.11.027 22155289
39. Chao W, Kim J, Rekawa S, Fischer P, Anderson EH. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy. Optics Express. 2009;17(20):17669–17677. doi: 10.1364/OE.17.017669 19907552
40. Wang YG, Miyakawa RH, Chao W, Naulleau PP. Efficient Fresnel zoneplate pattern data preparation for high-resolution nanofabrication. Optics Communications. 2017;402:167–172. doi: 10.1016/j.optcom.2017.05.060
41. Torralba M, Valenzuela M, Yagüe-Fabra J, Albajez J, Aguilar J. Large range nanopositioning stage design: A three-layer and two-stage platform. Measurement. 2016;89:55–71. doi: 10.1016/j.measurement.2016.03.075
42. Gianoncelli A, Vaccari L, Kourousias G, Cassese D, Bedolla D, Kenig S, et al. Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Scientific reports. 2015;5:10250. doi: 10.1038/srep10250 25974639
43. Ohgaki T, Toda H, Uesugi K, Kobayashi T, Makii K, Takagi T, et al. Application of local tomography technique to high-resolution synchrotron X-ray imaging. In: Materials science forum. vol. 539. Trans Tech Publ; 2007. p. 287–292.
44. Wang X, Liu H, Yan B, Li L, Hu G. 3D image reconstruction algorithm for truncated projection data in a half-covered scanning configuration. Insight-Non-Destructive Testing and Condition Monitoring. 2013;55(5):243–248. doi: 10.1784/insi.2012.55.5.243
45. Andrew M, Graham S, Thompson W. Iterative reconstruction techniques for X-ray microscopy in Geosciences. Microscopy and Microanalysis. 2017;23(S1):2162–2163. doi: 10.1017/S1431927617011473
46. Li F, Guan Y, Xiong Y, Zhang X, Liu G, Tian Y. Method for extending the depth of focus in X-ray microscopy. Optics express. 2017;25(7):7657–7667. doi: 10.1364/OE.25.007657 28380885
47. Otón J, Pereiro E, Pérez-Berná AJ, Millach L, Sorzano COS, Marabini R, et al. Characterization of transfer function, resolution and depth of field of a soft X-ray microscope applied to tomography enhancement by Wiener deconvolution. Biomedical optics express. 2016;7(12):5092–5103. doi: 10.1364/BOE.7.005092 28018727
48. Otón J, Pereiro E, Conesa JJ, Chichón FJ, Luque D, Rodríguez JM, et al. XTEND: Extending the depth of field in cryo soft X-ray tomography. Scientific reports. 2017;7:45808. doi: 10.1038/srep45808 28374769
49. Selin M, Fogelqvist E, Werner S, Hertz HM. Tomographic reconstruction in soft x-ray microscopy using focus-stack back-projection. Optics letters. 2015;40(10):2201–2204. doi: 10.1364/OL.40.002201 26393699
50. Klukowska J, Herman GT. Reconstruction from microscopic projections with defocus-gradient and attenuation effects. In: Computational Methods for Three-Dimensional Microscopy Reconstruction. Springer; 2014. p. 157–186.
51. Jensen GJ, Kornberg RD. Defocus-gradient corrected back-projection. Ultramicroscopy. 2000;84(1-2):57–64. doi: 10.1016/s0304-3991(00)00005-x 10896140
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy