Effect of epoch length on intensity classification and on accuracy of measurement under controlled conditions on treadmill: Towards a better understanding of accelerometer measurement
Autoři:
Nicolas Fabre aff001; Léna Lhuisset aff001; Caroline Bernal aff001; Julien Bois aff001
Působiště autorů:
Universite de Pau & des Pays de l’Adour, e2s UPPA, MEPS, Tarbes, France
aff001
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227740
Souhrn
Purpose
The aim of this study was to analyze the effect of epoch length on intensity classification during continuous and intermittent activities.
Methods
Ten active students exercised under controlled conditions on a treadmill for four 5-min bouts by combining two effort intensities (running and walking) and two physical activity (PA) patterns (continuous or intermittent). The testing session was designed to generate a known level of moderate to vigorous PA (MVPA) for each condition. These PA levels were used as criterion measures to compare with the accelerometer measures. Data obtained from the accelerometer were reintegrated into 1-sec, 10-sec, 30-sec and 60-sec epochs. Equivalence testing was used to examine measurement agreements between MVPA values obtained with the different epochs and the reference values. Mean absolute percent errors (MAPE) were also calculated to provide an indicator of overall measurement error.
Results
During the intermittent conditions, only the value obtained with the 1-sec epoch was significantly equivalent to the reference value. With longer epochs the difference increased for both intermittent conditions but in an opposite way: with longer epochs, MVPA decreased during walking but increased during running. Regarding the measurement accuracy, the pattern of variations according to the epoch length selected during the intermittent conditions was identical between walking and running: MAPE increased with the increase in epoch length. MAPE remained low only for the 1-sec epoch (7.6% and 2.7% for walking and running, respectively), increased at 31.3% and 34% for the 10-sec epoch and until near 100% with the 30- and 60-sec epoch lengths.
Conclusion
This study highlighted the misclassification of exercise intensity based on accelerometer measurement and described for the first time the extent and the direction of this misclassification. Moreover, we can confirm that the shorter epochs are more accurate to measure the real exercise intensity during intermittent PA whatever the intensity.
Klíčová slova:
Accelerometers – Adolescents – Bioenergetics – Data processing – Physical activity – Running – Sports and exercise medicine – Walking
Zdroje
1. Trost SG. Objective measurement of physical activity in youth: Current issues, future directions. Exerc Sport Sci Rev. 2001;29(1): 32–36. doi: 10.1097/00003677-200101000-00007 11210445
2. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1): 181–188. doi: 10.1249/mss.0b013e31815a51b3 18091006
3. Sagelv EH, Ekelund U, Pedersen S, Brage S, Hansen BH, Johansson J, et al. Physical activity levels in adults and elderly from triaxial and uniaxial accelerometry. The Tromso Study. PLoS One. 2019;14(12): e0225670. doi: 10.1371/journal.pone.0225670 31794552
4. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5): 777–781. doi: 10.1097/00005768-199805000-00021 9588623
5. Welk GJ, Blair SN, Wood K, Jones S, Thompson RW. A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc. 2000;32(9 Suppl): S489–497. doi: 10.1097/00005768-200009001-00008 10993419
6. Yngve A, Nilsson A, Sjostrom M, Ekelund U. Effect of monitor placement and of activity setting on the MTI accelerometer output. Med Sci Sports Exerc. 2003;35(2): 320–326. doi: 10.1249/01.MSS.0000048829.75758.A0 12569223
7. Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000;32(9 Suppl): S442–449.
8. Chomistek AK, Yuan C, Matthews CE, Troiano RP, Bowles HR, Rood J, et al. Physical Activity Assessment with the ActiGraph GT3X and Doubly Labeled Water. Med Sci Sports Exerc. 2017;49(9): 1935–1944. doi: 10.1249/MSS.0000000000001299 28419028
9. Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR. Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30(4): 629–633. doi: 10.1097/00005768-199804000-00023 9565947
10. Gastin PB, Cayzer C, Dwyer D, Robertson S. Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. J Sci Med Sport. 2018;21(3):291–295. doi: 10.1016/j.jsams.2017.07.022 28797831
11. Baquet G, Stratton G, Van Praagh E, Berthoin S. Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: A methodological issue. Prev Med. 2007;44(2): 143–147. doi: 10.1016/j.ypmed.2006.10.004 17157370
12. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017;47(9): 1821–1845. doi: 10.1007/s40279-017-0716-0 28303543
13. Nilsson A, Ekelund U, Yngve A, Sjöström M. Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatr Exerc Sci. 2002;14(1): 87–96.
14. Reilly JJ, Penpraze V, Hislop J, Davies G, Grant S, Paton JY. Objective measurement of physical activity and sedentary behaviour: Review with new data. Arch Dis Child. 2008;93(7): 614–619. doi: 10.1136/adc.2007.133272 18305072
15. Vale S, Santos R, Silva P, Soares-Miranda L, Mota J. Preschool children physical activity measurement: importance of epoch length choice. Pediatr Exerc Sci. 2009;21(4): 413–420. doi: 10.1123/pes.21.4.413 20128361
16. Aibar A, Chanal J. Physical Education: The Effect of Epoch Lengths on Children’s Physical Activity in a Structured Context. PloS one. 2015;10(4): e0121238. doi: 10.1371/journal.pone.0121238 25874641
17. Sanders T, Cliff DP, Lonsdale C. Measuring adolescent boys' physical activity: bout length and the influence of accelerometer epoch length. PloS one. 2014;9(3): e92040. doi: 10.1371/journal.pone.0092040 24643129
18. Tudor-Locke C, Han H, Aguiar EJ, Barreira TV, Schuna JM, Jr., Kang M, et al. How fast is fast enough? Walking cadence (steps/min) as a practical estimate of intensity in adults: a narrative review. Br J Sports Med. 2018;52(12): 776–788. doi: 10.1136/bjsports-2017-097628 29858465
19. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr., Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8): 1575–1581. doi: 10.1249/MSS.0b013e31821ece12 21681120
20. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1): 181–188. doi: 10.1249/mss.0b013e31815a51b3 18091006
21. Orme M, Wijndaele K, Sharp SJ, Westgate K, Ekelund U, Brage S. Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. Int J Behav Nutr Phys Act. 2014;11(1): 34. doi: 10.1186/1479-5868-11-34 24612726
22. Dixon PM, Saint-Maurice PF, Kim Y, Hibbing P, Bai Y, Welk GJ. A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement. Med Sci Sports Exerc. 2018;50(4): 837–845. doi: 10.1249/MSS.0000000000001481 29135817
23. Kim Y, Crouter SE, Lee JM, Dixon PM, Gaesser GA, Welk GJ. Comparisons of prediction equations for estimating energy expenditure in youth. J Sci Med Sport. 2016;19(1): 35–40. doi: 10.1016/j.jsams.2014.10.002 25459235
24. Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Med Sci Sports Exerc. 2014;46(9): 1840–1848. doi: 10.1249/MSS.0000000000000287 24777201
25. Ojiambo R, Cuthill R, Budd H, Konstabel K, Casajus JA, Gonzalez-Aguero A, et al. Impact of methodological decisions on accelerometer outcome variables in young children. Int J Obes (Lond). 2011;35 Suppl 1: S98–103.
26. Sallis JF, McKenzie TL. Physical education's role in public health. Res Q Exerc Sport. 1991;62(2): 124–137. doi: 10.1080/02701367.1991.10608701 1925034
27. OMS. Global Recommendations on Physical activity for Health. Geneva: World Health Organization; 2010. 60 p.
28. Plasqui G, Westerterp KR. Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity (Silver Spring). 2007;15(10): 2371–2379.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Kde se vzal COVID-19: Mohou za pandemii nakažená zvířata, nebo únik viru z laboratoře?
- Jak se liší věk jednotlivých orgánů v našem těle?
- „Jednohubky“ z klinického výzkumu – 2025/1
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy