Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples
Autoři:
Pamela R. Matias-Garcia aff001; Rory Wilson aff001; Veronika Mussack aff004; Eva Reischl aff001; Melanie Waldenberger aff001; Christian Gieger aff001; Gabriele Anton aff001; Annette Peters aff002; Andrea Kuehn-Steven aff001
Působiště autorů:
Research Unit of Molecular Epidemiology, Helmholtz Zentrum Muenchen, German Center for Environmental Health, Neuherberg, Germany
aff001; Institute of Epidemiology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
aff002; TUM School of Medicine, Technical University of Munich, Munich, Germany
aff003; Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
aff004; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
aff005; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
aff006
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227648
Souhrn
Sample collection, processing, storage and isolation methods constitute pre-analytic factors that can influence the quality of samples used in research and clinical practice. With regard to biobanking practices, a critical point in the sample’s life chain is storage, particularly long-term storage. Since most studies examine the influence of different temperatures (4°C, room temperature) or delays in sample processing on sample quality, there is only little information on the effects of long-term storage at ultra-low (vapor phase of liquid nitrogen) temperatures on biomarker levels. Among these biomarkers, circulating miRNAs hold great potential for diagnosis or prognosis for a variety of diseases, like cancer, infections and chronic diseases, and are thus of high interest in several scientific questions. We therefore investigated the influence of long-term storage on levels of eight circulating miRNAs (miR-103a-3p, miR-191-5p, miR-124-3p, miR-30c-5p, miR-451a, miR-23a-3p, miR-93-5p, miR-24-3p, and miR-33b-5p) from 10 participants from the population-based cohort study KORA. Sample collection took place during the baseline survey S4 and the follow-up surveys F4 and FF4, over a time period spanning from 1999 to 2014. The influence of freeze-thaw (f/t) cycles on miRNA stability was also investigated using samples from volunteers (n = 6). Obtained plasma samples were profiled using Exiqon’s miRCURYTM real-time PCR profiling system, and repeated measures ANOVA was used to check for storage or f/t effects. Our results show that detected levels of most of the studied miRNAs showed no statistically significant changes due to storage at ultra-low temperatures for up to 17 years; miR-451a levels were altered due to contamination during sampling. Freeze-thawing of one to four cycles showed an effect only on miR-30c-5p. Our results highlight the robustness of this set of circulating miRNAs for decades of storage at ultra-low temperatures and several freeze-thaw cycles, which makes our findings increasingly relevant for research conducted with biobanked samples.
Klíčová slova:
Biomarkers – Blood plasma – Data visualization – MicroRNAs – Oligonucleotides – Platelets – principal component analysis – Specimen storage
Zdroje
1. Ellervik C, Vaught J. Preanalytical Variables Affecting the Integrity of Human Biospecimens in Biobanking. Clinical Chemistry. 2015;61(7):914–34. doi: 10.1373/clinchem.2014.228783 25979952
2. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97. Epub 2004/01/28. doi: 10.1016/s0092-8674(04)00045-5 14744438.
3. Finnegan EF, Pasquinelli AE. MicroRNA biogenesis: regulating the regulators. Critical reviews in biochemistry and molecular biology. 2013;48(1):51–68. Epub 2012/11/21. doi: 10.3109/10409238.2012.738643 23163351; PubMed Central PMCID: PMC3557704.
4. Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. The international journal of biochemistry & cell biology. 2010;42(8):1316–29. Epub 2009/10/06. doi: 10.1016/j.biocel.2009.09.016 19800023.
5. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Research. 2018;47(D1):D155–D62. doi: 10.1093/nar/gky1141 30423142
6. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69. doi: 10.1038/nrg3198 22510765.
7. Ammerlaan W, Betsou F. Intraindividual Temporal miRNA Variability in Serum, Plasma, and White Blood Cell Subpopulations. Biopreserv Biobank. 2016;14(5):390–7. doi: 10.1089/bio.2015.0125 27096687.
8. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi: 10.1038/nature02871 15372042.
9. Plasterk RH. Micro RNAs in animal development. Cell. 2006;124(5):877–81. doi: 10.1016/j.cell.2006.02.030 16530032.
10. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. doi: 10.1371/journal.pone.0003148 18773077; PubMed Central PMCID: PMC2519789.
11. Kuner R, Brase JC, Sultmann H, Wuttig D. microRNA biomarkers in body fluids of prostate cancer patients. Methods. 2013;59(1):132–7. doi: 10.1016/j.ymeth.2012.05.004 22652624.
12. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: Moving from Bench to Clinic as Next Generation Medicine. Molecular Therapy—Nucleic Acids. 8:132–43. doi: 10.1016/j.omtn.2017.06.005 28918016
13. Peng F, He J, Chen Loo J, Kong SK, Li B, Gu D. IdentificationofserumMicroRNAsasdiagnosticbiomarkersforinfluenzaH7N9infection. VirologyReports. 2017;7:1–8. http://dx.doi.org/10.1016/j.virep.2016.11.001.
14. Jae-Eun L, Young-Youl K. Impact of Preanalytical Variations in Blood-Derived Biospecimens on Omics Studies: Toward Precision Biobanking? OMICS: A Journal of Integrative Biology. 2017;21(9):499–508. doi: 10.1089/omi.2017.0109 28873014.
15. Moore HM, Compton CC, Alper J, Vaught JB. International Approaches to Advancing Biospecimen Science. Cancer Epidemiology Biomarkers & Prevention. 2011;20(5):729–32. doi: 10.1158/1055-9965.epi-11-0021 21430299
16. Simeon-Dubach D, Burt AD, Hall PA. Quality really matters: the need to improve specimen quality in biomedical research. The Journal of Pathology. 2012;228(4):431–3. doi: 10.1002/path.4117 23023660
17. Nair VS, Pritchard CC, Tewari M, Ioannidis JP. Design and Analysis for Studying microRNAs in Human Disease: A Primer on -Omic Technologies. American journal of epidemiology. 2014;180(2):140–52. Epub 2014/06/27. doi: 10.1093/aje/kwu135 24966218; PubMed Central PMCID: PMC4082346.
18. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(12):5003–8. Epub 2011/03/09. doi: 10.1073/pnas.1019055108 21383194; PubMed Central PMCID: PMC3064324.
19. Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 2011;6(6):e20769. Epub 2011/06/24. doi: 10.1371/journal.pone.0020769 21698099; PubMed Central PMCID: PMC3117799.
20. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer prevention research. 2012;5(3):492–7. doi: 10.1158/1940-6207.CAPR-11-0370 22158052; PubMed Central PMCID: PMC4186243.
21. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40. doi: 10.1373/clinchem.2010.157198 21487102.
22. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561. Epub 2012/08/04. doi: 10.1371/journal.pone.0041561 22859996; PubMed Central PMCID: PMC3409228.
23. Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013;59(1):S1–6. doi: 10.1016/j.ymeth.2012.09.015 23036329.
24. Mestdagh P, Hartmann N, Baeriswyl L, Andreasen D, Bernard N, Chen C, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nature methods. 2014;11(8):809–15. Epub 2014/06/30. doi: 10.1038/nmeth.3014 24973947.
25. Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. The Journal of molecular diagnostics: JMD. 2013;15(6):827–34. Epub 2013/08/31. doi: 10.1016/j.jmoldx.2013.07.005 23988620.
26. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008;18:997. doi: 10.1038/cr.2008.282 https://www.nature.com/articles/cr2008282#supplementary-information. 18766170
27. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology. 2011;13:423. doi: 10.1038/ncb2210 https://www.nature.com/articles/ncb2210#supplementary-information. 21423178
28. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513–8. doi: 10.1073/pnas.0804549105 18663219; PubMed Central PMCID: PMC2492472.
29. Koberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, Bonig H, et al. Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One. 2013;8(9):e75184. doi: 10.1371/journal.pone.0075184 24073250; PubMed Central PMCID: PMC3779196.
30. Cuhadar S, Koseoglu M, Atay A, Dirican A. The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochemia medica. 2013;23(1):70–7. doi: 10.11613/BM.2013.009 23457767.
31. Paltiel L, Ronningen KS, Meltzer HM, Baker SV, Hoppin JA. Evaluation of Freeze Thaw Cycles on stored plasma in the Biobank of the Norwegian Mother and Child Cohort Study. Cell Preserv Technol. 2008;6(3):223–30. doi: 10.1089/cpt.2008.0012 20428472; PubMed Central PMCID: PMC2860294.
32. Balzano F, Deiana M, Dei Giudici S, Oggiano A, Baralla A, Pasella S, et al. miRNA Stability in Frozen Plasma Samples. Molecules. 2015;20(10):19030–40. Epub 2015/10/23. doi: 10.3390/molecules201019030 26492230; PubMed Central PMCID: PMC6331950.
33. Cheng HH, Yi HS, Kim Y, Kroh EM, Chien JW, Eaton KD, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795. doi: 10.1371/journal.pone.0064795 23762257; PubMed Central PMCID: PMC3676411.
34. Binderup HG, Houlind K, Madsen JS, Brasen CL. Pre-storage centrifugation conditions have significant impact on measured microRNA levels in biobanked EDTA plasma samples. Biochem Biophys Rep. 2016;7:195–200. doi: 10.1016/j.bbrep.2016.06.005 28955906; PubMed Central PMCID: PMC5613297.
35. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Front Genet. 2013;4:94. doi: 10.3389/fgene.2013.00094 23745127; PubMed Central PMCID: PMC3663194.
36. Grasedieck S, Scholer N, Bommer M, Niess JH, Tumani H, Rouhi A, et al. Impact of serum storage conditions on microRNA stability. Leukemia. 2012;26(11):2414–6. doi: 10.1038/leu.2012.106 22504138.
37. Holle R, Happich M, Lowel H, Wichmann HE, Group MKS. KORA—a research platform for population based health research. Gesundheitswesen. 2005;67 Suppl 1:S19–25. doi: 10.1055/s-2005-858235 16032513.
38. World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. doi: 10.1001/jama.2013.281053 24141714.
39. Pizzamiglio S, Zanutto S, Ciniselli CM, Belfiore A, Bottelli S, Gariboldi M, et al. A methodological procedure for evaluating the impact of hemolysis on circulating microRNAs. Oncol Lett. 2017;13(1):315–20. doi: 10.3892/ol.2016.5452 28123561; PubMed Central PMCID: PMC5244842.
40. Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer research. 2004;64(15):5245–50. Epub 2004/08/04. doi: 10.1158/0008-5472.CAN-04-0496 15289330.
41. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology. 2002;3(7):RESEARCH0034. Epub 2002/08/20. doi: 10.1186/gb-2002-3-7-research0034 12184808; PubMed Central PMCID: PMC126239.
42. Vandesompele J, Kubista M, Pfaffl M. Reference gene validation software for improved normalization. Real-Time PCR: Current Technology and Applications (Edited by: Julie Logan, Kirstin Edwards and Nick Saunders) Caister Academic Press, UK (2009) 2009.
43. Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA methylation of lipid-related genes affects blood lipid levels. Circulation Cardiovascular genetics. 2015;8(2):334–42. Epub 2015/01/15. doi: 10.1161/CIRCGENETICS.114.000804 25583993; PubMed Central PMCID: PMC5012424.
44. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22. Epub 2009/02/28. doi: 10.1373/clinchem.2008.112797 19246619.
45. Computing RFfS. R: A language and environment for statistical computing. Vienna, Austria2016.
46. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–59. Epub 2010/07/10. doi: 10.1093/nar/gkq601 20615901; PubMed Central PMCID: PMC2978372.
47. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(11):4255–60. Epub 2013/02/27. doi: 10.1073/pnas.1214046110 23440203; PubMed Central PMCID: PMC3600502.
48. Burns MJ, Nixon GJ, Foy CA, Harris N. Standardisation of data from real-time quantitative PCR methods—evaluation of outliers and comparison of calibration curves. BMC biotechnology. 2005;5:31. Epub 2005/12/13. doi: 10.1186/1472-6750-5-31 16336641; PubMed Central PMCID: PMC1326201.
49. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609.
50. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nature Protocols. 2008;3(6):1101–8. doi: 10.1038/nprot.2008.73 18546601
51. Morata-Tarifa C, Picon-Ruiz M, Griñan-Lison C, Boulaiz H, Perán M, Garcia MA, et al. Validation of suitable normalizers for miR expression patterns analysis covering tumour heterogeneity. Scientific Reports. 2017;7:39782. doi: 10.1038/srep39782 https://www.nature.com/articles/srep39782#supplementary-information. 28051134
52. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50(4):298–301. Epub 2010/02/12. doi: 10.1016/j.ymeth.2010.01.032 20146939; PubMed Central PMCID: PMC4186708.
53. Andreu Z, Rivas E, Sanguino-Pascual A, Lamana A, Marazuela M, Gonzalez-Alvaro I, et al. Comparative analysis of EV isolation procedures for miRNAs detection in serum samples. Journal of extracellular vesicles. 2016;5:31655. Epub 2016/06/23. doi: 10.3402/jev.v5.31655 27330048; PubMed Central PMCID: PMC4916259.
54. Zhang Z, Mai Y. ‘WebPower’: An R Package for Basic and Advanced Statistical Power Analysis2018.
55. Zhang Z, Yuan K-H. Practical Statistical Power Analysis Using Webpower and R2018.
56. Ameling S, Kacprowski T, Chilukoti RK, Malsch C, Liebscher V, Suhre K, et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC medical genomics. 2015;8:61. doi: 10.1186/s12920-015-0136-7 26462558; PubMed Central PMCID: PMC4604724.
57. Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of Circulating Blood-Based MicroRNAs–Pre-Analytic Methodological Considerations. PLoS ONE. 2017;12(2):e0167969. doi: 10.1371/journal.pone.0167969 PMC5289450. 28151938
58. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun. 2009;390(1):1–4. doi: 10.1016/j.bbrc.2009.09.061 19769940.
59. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6(9):e24145. Epub 2011/09/13. doi: 10.1371/journal.pone.0024145 21909417; PubMed Central PMCID: PMC3164711.
60. Hastings ML, Palma J, Duelli DM. Sensitive PCR-based quantitation of cell-free circulating microRNAs. Methods. 2012;58(2):144–50. doi: 10.1016/j.ymeth.2012.07.026 22884953; PubMed Central PMCID: PMC3508311.
61. Kim DJ, Linnstaedt S, Palma J, Park JC, Ntrivalas E, Kwak-Kim JY, et al. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. The Journal of molecular diagnostics: JMD. 2012;14(1):71–80. doi: 10.1016/j.jmoldx.2011.09.002 22154918; PubMed Central PMCID: PMC3338348.
62. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–75. Epub 2014/01/30. doi: 10.3390/molecules19021568 24473213; PubMed Central PMCID: PMC6271968.
63. Hebels DG, Georgiadis P, Keun HC, Athersuch TJ, Vineis P, Vermeulen R, et al. Performance in omics analyses of blood samples in long-term storage: opportunities for the exploitation of existing biobanks in environmental health research. Environmental health perspectives. 2013;121(4):480–7. Epub 2013/02/07. doi: 10.1289/ehp.1205657 23384616; PubMed Central PMCID: PMC3620742.
64. Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, Bönig H, et al. Differential Stability of Cell-Free Circulating microRNAs: Implications for Their Utilization as Biomarkers. PLOS ONE. 2013;8(9):e75184. doi: 10.1371/journal.pone.0075184 24073250
65. Xiang M, Zeng Y, Yang R, Xu H, Chen Z, Zhong J, et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. 2014;454(1):210–4. Epub 2014/12/03. doi: 10.1016/j.bbrc.2014.10.064 25450382.
66. Muth DC, Powell BH, Zhao Z, Witwer KW. miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC research notes. 2018;11(1):273. Epub 2018/05/08. doi: 10.1186/s13104-018-3378-6 29728133; PubMed Central PMCID: PMC5936026.
67. Farina NH, Wood ME, Perrapato SD, Francklyn CS, Stein GS, Stein JL, et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J Cell Biochem. 2014;115(5):805–11. doi: 10.1002/jcb.24745 24357537; PubMed Central PMCID: PMC3992702.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy