Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey
Autoři:
Boglarka Racz aff001; Andras Varadi aff001; Paul G. Pearson aff002; Konstantin Petrukhin aff001
Působiště autorů:
Department of Ophthalmology, Columbia University, New York, New York, Unites States of America
aff001; Pearson Pharma Partners, Westlake Village, California, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0228291
Souhrn
Accumulation of lipofuscin bisretinoids in the retina contributes to pathogenesis of macular degeneration. Retinol-Binding Protein 4 (RBP4) antagonists reduce serum retinol concentrations thus partially reducing retinol delivery to the retina which decreases bisretinoid synthesis. BPN-14136 is a novel RBP4 antagonist with good in vitro potency and selectivity and optimal rodent pharmacokinetic (PK) and pharmacodynamic (PD) characteristics. To select a non-rodent species for regulatory toxicology studies, we conducted PK and PD evaluation of BPN-14136 in dogs and non-human primates (NHP). PK properties were determined following oral and intravenous administration of BPN-14136 in beagle dogs and cynomolgus monkeys. Dynamics of plasma RBP4 reduction in response to compound administration was used as a PD marker. BPN-14136 exhibited favorable PK profile in both species. Dose-normalized exposure was significantly higher in NHP than in dog. Baseline concentrations of RBP4 were considerably lower in dog than in NHP, reflecting the atypical reliance of canids on non-RBP4 mechanisms of retinoid trafficking. Oral administration of BPN-14136 to NHP induced a strong 99% serum RBP4 reduction. Dynamics of RBP4 lowering in both species correlated with compound exposure. Despite adequate PK and PD characteristics of BPN-14136 in dog, reliance of canids on non-RBP4 mechanisms of retinoid trafficking precludes evaluation of on-target toxicities for RBP4 antagonists in this species. Strong RBP4 lowering combined with good PK attributes and high BPN-14136 exposure achieved in NHP, along with the biology of retinoid trafficking that is similar to that of humans, support the choice of NHP as a non-rodent safety species.
Klíčová slova:
Blood plasma – Dogs – Macular degeneration – Monkeys – Oral administration – Retina – Rodents – Vitamin A
Zdroje
1. Petrukhin K. New therapeutic targets in atrophic age-related macular degeneration. Expert Opin Ther Targets. 2007;11(5):625–39. doi: 10.1517/14728222.11.5.625 17465722
2. Sparrow JR, Dowling JE, Bok D. Understanding RPE lipofuscin. Investigative ophthalmology & visual science. 2013;54(13):8325–6.
3. Delori FC, Goger DG, Dorey CK. Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. Investigative ophthalmology & visual science. 2001;42(8):1855–66.
4. Delori FC. RPE lipofuscin in ageing and age-related macular degeneration. In: Coscas FCP G., editor. Retinal Pigment Epithelium and Macular Disease (Documenta Ophthalmologica). 62. Dordrecht, The Netherlands Kluwer Academic Publishers; 1995. p. 37–45.
5. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina. Relationship to lipofuscin accumulation and macular degeneration. Investigative ophthalmology & visual science. 1989;30(8):1691–9.
6. Feeney-Burns L, Hilderbrand ES, Eldridge S. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Investigative ophthalmology & visual science. 1984;25(2):195–200.
7. Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Investigative ophthalmology & visual science. 2001;42(5):1051–6.
8. von Ruckmann A, Fitzke FW, Bird AC. Fundus autofluorescence in age-related macular disease imaged with a laser scanning ophthalmoscope. Investigative ophthalmology & visual science. 1997;38(2):478–86.
9. Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Brit J Ophthalmol. 2017;101(1):25–30.
10. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie G, Marknell T, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998;19(3):241–7. doi: 10.1038/915 9662395
11. Kennedy CJ, Rakoczy PE, Constable IJ. Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond). 1995;9 (Pt 6):763–71.
12. Radu RA, Han Y, Bui TV, Nusinowitz S, Bok D, Lichter J, et al. Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Investigative ophthalmology & visual science. 2005;46(12):4393–401.
13. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH. Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt's macular degeneration. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(8):4742–7. doi: 10.1073/pnas.0737855100 12671074
14. Maeda A, Maeda T, Golczak M, Imanishi Y, Leahy P, Kubota R, et al. Effects of potent inhibitors of the retinoid cycle on visual function and photoreceptor protection from light damage in mice. Mol Pharmacol. 2006;70(4):1220–9. doi: 10.1124/mol.106.026823 16837623
15. Palczewski K. Retinoids for treatment of retinal diseases. Trends Pharmacol Sci. 2010;31(6):284–95. doi: 10.1016/j.tips.2010.03.001 20435355
16. Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK. New insights into retinoid metabolism and cycling within the retina. Progress in retinal and eye research. 2013;32:48–63. doi: 10.1016/j.preteyeres.2012.09.002 23063666
17. Sparrow JR, Fishkin N, Zhou J, Cai B, Jang YP, Krane S, et al. A2E, a byproduct of the visual cycle. Vision research. 2003;43(28):2983–90. doi: 10.1016/s0042-6989(03)00475-9 14611934
18. Boyer NP, Higbee D, Currin MB, Blakeley LR, Chen C, Ablonczy Z, et al. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem. 2012;287(26):22276–86. doi: 10.1074/jbc.M111.329235 22570475
19. Monaco HL. Three-dimensional structure of the transthyretin-retinol-binding protein complex. Clin Chem Lab Med. 2002;40(12):1229–36. doi: 10.1515/CCLM.2002.213 12553423
20. Monaco HL, Rizzi M, Coda A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science. 1995;268(5213):1039–41. doi: 10.1126/science.7754382 7754382
21. Monaco HL. The transthyretin-retinol-binding protein complex. Biochimica et biophysica acta. 2000;1482(1–2):65–72. doi: 10.1016/s0167-4838(00)00140-0 11058748
22. Yamamoto Y, Yoshizawa T, Kamio S, Aoki O, Kawamata Y, Masushige S, et al. Interactions of transthyretin (TTR) and retinol-binding protein (RBP) in the uptake of retinol by primary rat hepatocytes. Exp Cell Res. 1997;234(2):373–8. doi: 10.1006/excr.1997.3642 9260907
23. Goodman DS. Plasma retinol-binding protein. Ann N Y Acad Sci. 1980;348:378–90. doi: 10.1111/j.1749-6632.1980.tb21314.x 6994566
24. Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjaer A, et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol. 1999;10(4):685–95. 10203351
25. Noy N, Slosberg E, Scarlata S. Interactions of retinol with binding proteins: studies with retinol-binding protein and with transthyretin. Biochemistry. 1992;31(45):11118–24. doi: 10.1021/bi00160a023 1445851
26. Cioffi CL, Dobri N, Freeman EE, Conlon MP, Chen P, Stafford DG, et al. Design, synthesis, and evaluation of nonretinoid retinol binding protein 4 antagonists for the potential treatment of atrophic age-related macular degeneration and Stargardt disease. J Med Chem. 2014;57(18):7731–57. doi: 10.1021/jm5010013 25210858
27. Cioffi CL, Racz B, Freeman EE, Conlon MP, Chen P, Stafford DG, et al. Bicyclic [3.3.0]-Octahydrocyclopenta[c]pyrrolo Antagonists of Retinol Binding Protein 4: Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease. J Med Chem. 2015;58(15):5863–88. doi: 10.1021/acs.jmedchem.5b00423 26181715
28. Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G, et al. A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem. 2018;293(29):11574–88. doi: 10.1074/jbc.RA118.002062 29871924
29. Dobri N, Qin Q, Kong J, Yamamoto K, Liu Z, Moiseyev G, et al. A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis. Invest Ophthalmol Vis Sci. 2013;54(1):85–95. doi: 10.1167/iovs.12-10050 23211825
30. Cioffi CL, Racz B, Varadi A, Freeman EE, Conlon MP, Chen P, et al. Design, Synthesis, and Preclinical Efficacy of Novel Nonretinoid Antagonists of Retinol-Binding Protein 4 in the Mouse Model of Hepatic Steatosis. J Med Chem. 2019;62(11):5470–500. doi: 10.1021/acs.jmedchem.9b00352 31079449
31. Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. Journal of pharmacokinetics and biopharmaceutics. 1973;1(2):123–36. doi: 10.1007/bf01059626 4764426
32. Schweigert FJ, Ryder OA, Rambeck WA, Zucker H. The majority of vitamin A is transported as retinyl esters in the blood of most carnivores. Comp Biochem Physiol A Comp Physiol. 1990;95(4):573–8. doi: 10.1016/0300-9629(90)90741-a 1971545
33. Petrukhin K. Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment. Drug Discovery Today: Therapeutic Strategies. 2013;10(1):e11–e20. doi: 10.1016/j.ddstr.2013.05.004 25152755
34. Rogers EJ, Sabrah T, Hebert JR, Ausman LM, Hegsted DM, Nicolosi RJ. A comparison of serum retinol concentration between human and different species of normo and hypercholesterolemic nonhuman primates fed semi-purified diets with defined amounts of vitamin A. Comp Biochem Physiol Comp Physiol. 1993;106(4):749–54. doi: 10.1016/0300-9629(93)90392-h 7906633
35. Crissey S, Ange K, Slifka K, Bowen P, Stacewicz-Sapuntzakis M, Langman C, et al. Serum concentrations of vitamin D metabolites, vitamins A and E, and carotenoids in six canid and four ursid species at four zoos. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(1):155–65. doi: 10.1016/s1095-6433(00)00289-0 11137448
36. Guziewicz KE, Zangerl B, Lindauer SJ, Mullins RF, Sandmeyer LS, Grahn BH, et al. Bestrophin gene mutations cause canine multifocal retinopathy: a novel animal model for best disease. Invest Ophthalmol Vis Sci. 2007;48(5):1959–67. doi: 10.1167/iovs.06-1374 17460247
37. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ. Investigation of Oral Fenretinide for Treatment of Geographic Atrophy in Age-Related Macular Degeneration. Retina. 2013;33(3):498–507. doi: 10.1097/IAE.0b013e318265801d 23023528
38. Vogel S, Piantedosi R, O'Byrne SM, Kako Y, Quadro L, Gottesman ME, et al. Retinol-binding protein-deficient mice: biochemical basis for impaired vision. Biochemistry. 2002;41(51):15360–8. doi: 10.1021/bi0268551 12484775
39. Biesalski HK, Chichili GR, Frank J, von Lintig J, Nohr D. Conversion of beta-carotene to retinal pigment. Vitam Horm. 2007;75:117–30. doi: 10.1016/S0083-6729(06)75005-1 17368314
40. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, et al. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. Embo J. 1999;18(17):4633–44. doi: 10.1093/emboj/18.17.4633 10469643
41. Quadro L, Hamberger L, Colantuoni V, Gottesman ME, Blaner WS. Understanding the physiological role of retinol-binding protein in vitamin A metabolism using transgenic and knockout mouse models. Mol Aspects Med. 2003;24(6):421–30. doi: 10.1016/s0098-2997(03)00038-4 14585313
42. Wolf G. A case of human vitamin A deficiency caused by an inherited defect in retinol-binding protein without clinical symptoms except night blindness. Nutr Rev. 1999;57(8):258–60. doi: 10.1111/j.1753-4887.1999.tb06955.x 10518414
43. Seeliger MW, Biesalski HK, Wissinger B, Gollnick H, Gielen S, Frank J, et al. Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. Investigative ophthalmology & visual science. 1999;40(1):3–11.
44. Chichili GR, Nohr D, Schaffer M, von Lintig J, Biesalski HK. beta-Carotene conversion into vitamin A in human retinal pigment epithelial cells. Investigative ophthalmology & visual science. 2005;46(10):3562–9.
45. Thompson CL, Blaner WS, Van Gelder RN, Lai K, Quadro L, Colantuoni V, et al. Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(20):11708–13. doi: 10.1073/pnas.201301498 11562477
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy