Persistence of chikungunya ECSA genotype and local outbreak in an upper medium class neighborhood in Northeast Brazil
Autoři:
Jaqueline Goes de Jesus aff001; Gabriel da Luz Wallau aff002; Maricelia Lima Maia aff003; Joilson Xavier aff005; Maria Aparecida Oliveira Lima aff003; Vagner Fonseca aff005; Alvaro Salgado de Abreu aff005; Stephane Fraga de Oliveira Tosta aff005; Helineide Ramos do Amaral aff003; Italo Andrade Barbosa Lima aff001; Paloma Viana Silva aff001; Daiana Carlos dos Santos aff001; Aline Sousa de Oliveira aff001; Siane Campos de Souza aff001; Melissa Barreto Falcão aff004; Erenilde Cerqueira aff003; Laís Ceschini Machado aff002; Mariana Carolina Sobral aff002; Tatiana Maria Teodoro Rezende aff002; Mylena Ribeiro Pereira aff007; Felicidade Mota Pereira aff008; Zuinara Pereira Gusmão Maia aff008; Rafael Freitas de Oliveira França aff007; André Luiz de Abreu aff009; Carlos Frederico Campelo de Albuquerque e Melo aff010; Nuno Rodrigues Faria aff011; Rivaldo Venâncio da Cunha aff012; Marta Giovanetti aff005; Luiz Carlos Junior Alcantara aff005
Působiště autorů:
Laboratório de Patologia Experimental, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
aff001; Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
aff002; Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
aff003; Secretaria de Saúde de Feira de Santana, Ministério da Saúde, Feira de Santana, Brazil
aff004; Laboratório de Genética Celular e Molecular, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
aff005; KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
aff006; Departamento de Virologia, Instituto Aggeu Magalhaes, Fundação Oswaldo Cruz, Recife, Brazil
aff007; Laboratório Central de Saúde Pública da Bahia, Salvador, Bahia, Brazil
aff008; Secretaria de Vigilância em Saúde, Coordenação Geral de Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
aff009; Organização Pan-Americana da Saúde/Organização Mundial da Saúde—(OPAS/OMS), Brasília, Brazil
aff010; Department of Zoology, University of Oxford, Oxford, United Kingdom
aff011; Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
aff012; Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
aff013; Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
aff014
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226098
Souhrn
The chikungunya East/Central/South/Africa virus lineage (CHIKV-ECSA) was first detected in Brazil in the municipality of Feira de Santana (FS) by mid 2014. Following that, a large number of CHIKV cases have been notified in FS, which is the second-most populous city in Bahia state, northeastern Brazil, and plays an important role on the spread to other Brazilian states due to climate conditions and the abundance of competent vectors. To better understand CHIKV dynamics in Bahia state, we generated 5 complete genome sequences from a local outbreak raised in Serraria Brasil, a neighbourhood in FS, by next-generation sequencing using Illumina approach. Phylogenetic reconstructions revealed that the new FS genomes belongs to the ECSA genotype and falls within a single strongly supported monophyletic clade that includes other older CHIKV sequences from the same location, suggesting the persistence of the virus during distinct epidemic seasons. We also performed minor variants analysis and found a small number of SNPs per sample (b_29L and e_45SR = 16 SNPs, c_29SR = 29 and d_45PL and f_45FL = 21 SNPs). Out of the 93 SNPs found, 71 are synonymous, 21 are non-synonymous and one generated a stop codon. Although those mutations are not related to the increase of virus replication and/or infectivity, some SNPs were found in non-structural proteins which may have an effect on viral evasion from the mammal immunological system. These findings reinforce the needing of further studies on those variants and of continued genomic surveillance strategies to track viral adaptations and to monitor CHIKV epidemics for improved public health control.
Klíčová slova:
Arboviral infections – Brazil – Genome analysis – Chikungunya infection – Chikungunya virus – Infectious disease surveillance – Phylogenetic analysis – Sequence alignment
Zdroje
1. Pathak H, Mohan MC, Ravindran V. Chikungunya arthritis. Clinical Medicine (London, England). 2019, 19(5):381–385. https://doi.org/10.7861/clinmed.2019-0035
2. Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, Sam IC. An amino acid change in nsP4 of chikungunya virus confers fitness advantage in human cell lines rather than in Aedes albopictus. Journal of General Virology. Oct/2019. https://doi.org/10.1099/jgv.0.001338.
3. Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81(Pt 2):471–9. doi: 10.1099/0022-1317-81-2-471 10644846
4. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney MC, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):e263. doi: 10.1371/journal.pmed.0030263 16700631
5. Powers AM. Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak. Exp Biol Med (Maywood). 2011;236(8):909–14.
6. Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MUG, de Oliveira LF, et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015;13: 102. doi: 10.1186/s12916-015-0348-x 25976325
7. Rodrigues Faria N, Lourenço J, Marques de Cerqueira E, Maia de Lima M, Pybus O, Carlos Junior Alcantara L. Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014–2015. PLoS Currents. 2016;8: ecurrents.outbreaks.c97507e3e48efb946401755d468c28. doi: 10.1371/currents.outbreaks.c97507e3e48efb946401755d468c28b2 27330849
8. Brasil. IBGE Cidades: Feira de Santana. Instituto Brasileiro de Geografia e Estatística (IBGE). 2017. https://cidades.ibge.gov.br/brasil/ba/feira-desantana/panorama.
9. Brasil. Boletim Epidemiológico: Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 52, 2016. Secretaria de Vigilância em Saúde. Ministério da Saúde. Volume 48 N° 3–2017.
10. Brasil. Boletim Epidemiológico de Arboviroses, Bahia 2019. Diretoria de Vigilância Epidemiológica. Ministério da Saúde. Jun 2019.
11. Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerging infectious diseases. 2007;13: 764–767. doi: 10.3201/eid1305.070015 17553261
12. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nature protocols. 2017;12: 1261–1276. doi: 10.1038/nprot.2017.066 28538739
13. Fonseca V, Libin PJK, Theys K, Faria NR, Nunes MRT, et al. (2019) A computational method for the identification of Dengue, Zika and Chikungunya virus species and genotypes. PLOS Neglected Tropical Diseases 13(5): e0007231. doi: 10.1371/journal.pntd.0007231 31067235
14. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics. 2019;20: 1160–1166. doi: 10.1093/bib/bbx108 28968734
15. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England). 2014;30: 3276–3278. doi: 10.1093/bioinformatics/btu531 25095880
16. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nature methods. United States; 2012. p. 772. doi: 10.1038/nmeth.2109 22847109
17. Kozlov AM, Aberer AJ, Stamatakis A. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics (Oxford, England). 2015;31: 2577–2579. doi: 10.1093/bioinformatics/btv184 25819675
18. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus evolution. 2016;2: vew007. doi: 10.1093/ve/vew007 27774300
19. Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus evolution. 2018;4: vey016. doi: 10.1093/ve/vey016 29942656
20. Gill MS, Lemey P, Faria NR, Rambaut A, Shapiro B, Suchard MA. Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci. Mol Biol Evol. 2013;30: 713–724. doi: 10.1093/molbev/mss265 23180580
21. Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic biology. 2018;67: 901–904. doi: 10.1093/sysbio/syy032 29718447
22. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6: 80–92. doi: 10.4161/fly.19695 22728672
23. Cunha MDP, Santos CA Dos, Neto DF de L, Schanoski AS, Pour SZ, Passos SD, et al. Outbreak of chikungunya virus in a vulnerable population of Sergipe, Brazil-A molecular and serological survey. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2017;97: 44–49. doi: 10.1016/j.jcv.2017.10.01527
24. Morrison CR, Plante KS, Heise MT. Chikungunya Virus: Current Perspectives on a Reemerging Virus. Microbiol Spectr. 2016 Jun;4(3). doi: 10.1128/microbiolspec.EI10-0017-2016 27337473; PMCID: PMC6488301.
25. Morrison TE. Reemergence of chikungunya virus. J Virol. 2014 Oct;88(20):11644–7. doi: 10.1128/JVI.01432-14 Epub 2014 Jul 30. 25078691; PMCID: PMC4178719.
26. Musso D, Teissier A, Rouault E, Teururai S, de Pina J-J, Nhan T-X. Detection of chikungunya virus in saliva and urine. Virology Journal. 2016;13: 102. doi: 10.1186/s12985-016-0556-9 27306056
27. Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, Kelly CHL, et al. Tracking epidemic Chikungunya virus into the Indian Ocean from East Africa. The Journal of general virology. 2008;89: 2754–2760. doi: 10.1099/vir.0.2008/005413-0 18931072
28. Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiology of Chikungunya in the Americas. The Journal of infectious diseases. 2016;214: S441–S445. doi: 10.1093/infdis/jiw390 27920170
29. Johnson BW, Goodman CH, Holloway K, de Salazar PM, Valadere AM, Drebot MA. Evaluation of Commercially Available Chikungunya Virus Immunoglobulin M Detection Assays. The American journal of tropical medicine and hygiene. 2016;95: 182–192. doi: 10.4269/ajtmh.16-0013 26976887
30. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Secretaria de Atenção Básica Chikungunya: Manejo Clínico/ Ministério da Saúde, Secretaria de Vigilância em Saúde, Secretaria de Atenção Básica.–Brasília: Ministério da Saúde, 2017.
31. Ganesan VK, Duan B, Reid SP. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses. 2017;9: 368. doi: 10.3390/v9120368 29194359
32. Rezza G, Nicoletti L, Angelini R et al. Infection with Chikungunya virus in Italy: an outbreak in a temperate region. Lancet 2007; 370:1840–6. doi: 10.1016/S0140-6736(07)61779-6 18061059
33. Tauro, Laura B, Cardoso, Cristiane W, Souza, Raquel L, Nascimento, Leile CJ, Santos, Daniela R dos, Campos, Gubio S, Sardi, Silvia, Reis, Olivete B dos, Reis,
34. Brasil. Boletim Epidemiológico: Monitoramento dos casos de dengue, febre de chikungunya e febre pelo vírus Zika até a Semana Epidemiológica 6, 2016. Ministério da Saúde. Secretaria de Vigilância em Saúde. 2016; 47(10):7. http://portalarquivos2.saude.gov.br/images/pdf/2016/marco/23/2016-007—DengueSE-6-publica—-o.pdf
35. Peres R. C., Rego R. and Maciel‐de‐Freitas R. (2013), The use of the Premise Condition Index (PCI) to provide guidelines for Aedes aegypti surveys. Journal of Vector Ecology, 38: 190–192. doi: 10.1111/j.1948-7134.2013.12027.x 23701626
36. Brasil. Ministério da Saúde. OPAS. Divulgação dos dados do Levantamento Rápido de Índices para o Aedes aegypti. 2015. Available at https://www.paho.org/bra/index.php?option=com_content&view=article&id=4791:divulgacao-dos-dados-do-levantamento-rapido-de-indices-para-o-aedes-aegypti&Itemid=812.
37. Huits R, De Kort J, Van Den Berg R, Chong L, Tsoumanis A, Eggermont K, et al. Chikungunya virus infection in Aruba: Diagnosis, clinical features and predictors of post-chikungunya chronic polyarthralgia. PloS one. 2018;13: e0196630. doi: 10.1371/journal.pone.0196630 29709007
38. Pialoux G, Gauzere B-A, Jaureguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. The Lancet Infectious diseases. 2007;7: 319–327. doi: 10.1016/S1473-3099(07)70107-X 17448935
39. Dias JP, Costa M da CN, Campos GS, Paixao ES, Natividade MS, Barreto FR, et al. Seroprevalence of Chikungunya Virus after Its Emergence in Brazil. Emerging infectious diseases. 2018;24: 617–624. doi: 10.3201/eid2404.171370 29553317
40. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney M-C, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS medicine. 2006/05/23. 2006;3: e263–e263. doi: 10.1371/journal.pmed.0030263 16700631
41. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, et al. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proceedings of the National Academy of Sciences of the United States of America. 2011;108: 7872–7877. doi: 10.1073/pnas.1018344108 21518887
42. Rodas JD, Kautz T, Camacho E, Paternina L, Guzman H, Diaz FJ, et al. Genetic Characterization of Northwestern Colombian Chikungunya Virus Strains from the 2014–2015 Epidemic. The American journal of tropical medicine and hygiene. 2016;95: 639–646. doi: 10.4269/ajtmh.16-0091 27430542
43. Akhrymuk I, Kulemzin S V, Frolova EI. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. Journal of virology. 2012;86: 7180–7191. doi: 10.1128/JVI.00541-12 22514352
44. Fros JJ, van der Maten E, Vlak JM, Pijlman GP. The C-terminal domain of chikungunya virus nsP2 independently governs viral RNA replication, cytopathicity, and inhibition of interferon signaling. Journal of virology. 2013;87: 10394–10400. doi: 10.1128/JVI.00884-13 23864632
45. Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology. 2013;438: 37–49. doi: 10.1016/j.virol.2013.01.010 23411007
46. European Centre for Disease Prevention and Control. Guidelines for the surveillance of native mosquitoes in Europe. Stockholm: ECDC; 2014. doi: 10.2900/37227
47. Naveca FG, Claro I, Giovanetti M, de Jesus JG, Xavier J, Iani FC de M, et al. Genomic, epidemiological and digital surveillance of Chikungunya virus in the Brazilian Amazon. PLoS neglected tropical diseases. 2019;13: e0007065. doi: 10.1371/journal.pntd.0007065 30845267
48. Xavier J, Giovanetti M, Fonseca V, Theze J, Graf T, Fabri A, et al. Circulation of chikungunya virus East/Central/South African lineage in Rio de Janeiro, Brazil. PloS one. 2019;14: e0217871. doi: 10.1371/journal.pone.0217871 31185030
49. Faria NR, da Costa AC, Lourenc¸o J, Loureiro P, Lopes ME, Ribeiro R, et al. Genomic and epidemiological characterisation of a dengue virus outbreak among blood donors in Brazil. Sci Rep. 2017; 7 (1):15216. doi: 10.1038/s41598-017-15152-8 29123142
50. Faria NR, Quick J, Claro IM, The´ze´ J, de Jesus JG, Giovanetti M, et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature. 2017; 546(7658):406–10. doi: 10.1038/nature22401 28538727
51. Lima MM, Cerqueira EM, Falcão MB, Cerqueira HML, Cunha RV, Alcantara LCJ. (Re) organização da vigilância epidemiológica no enfrentamento da tríplice epidemia de dengue, chikungunya e Zika: desatando nós e buscando caminhos. Patologia das doenças 2 [recurso eletrônico] / Organizadora Yvanna Carla de Souza Salgado.–Ponta Grossa (PR): Atena Editora, 2018.–(Patologia das Doenças; v. 2)
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy