Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implantation
Autoři:
Jarel K. Gandhi aff001; Fukutaro Mano aff001; Raymond Iezzi, Jr. aff001; Stephen A. LoBue aff001; Brad H. Holman aff001; Michael P. Fautsch aff001; Timothy W. Olsen aff001; Jose S. Pulido aff001; Alan D. Marmorstein aff001
Působiště autorů:
Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
aff001
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227641
Souhrn
Retinal pigment epithelium (RPE) transplantation for the treatment of macular degeneration has been studied for over 30 years. Human clinical trials have demonstrated that RPE monolayers exhibit improved cellular engraftment and survival compared to single cell suspensions. The use of a scaffold facilitates implantation of a flat, wrinkle-free, precisely placed monolayer. Scaffolds currently being investigated in human clinical trials are non-degradable which results in the introduction of a chronic foreign body. To improve RPE transplant technology, a degradable scaffold would be desirable. Using human fibrin, we have generated scaffolds that support the growth of an RPE monolayer in vitro. To determine whether these scaffolds are degraded in vivo, we developed a surgical approach that delivers a fibrin hydrogel implant to the sub-retinal space of the pig eye and determined whether and how fast they degraded. Using standard ophthalmic imaging techniques, the fibrin scaffolds were completely degraded by postoperative week 8 in 5 of 6 animals. Postmortem histologic analysis confirmed the absence of the scaffold from the subretinal space at 8 weeks, and demonstrated the reattachment of the neurosensory retina and a normal RPE–photoreceptor interface. When mechanical debridement of a region of native RPE was performed during implantation surgery degradation was accelerated and scaffolds were undetectable by 4 weeks. These data represent the first in situ demonstration of a fully biodegradable scaffold for use in the implantation of RPE and other cell types for treatment of macular degeneration and other retinal degenerative diseases.
Klíčová slova:
Eyes – Fibrin – Gels – Macular degeneration – Medical devices and equipment – Medical implants – Retina – Swine
Zdroje
1. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2: e106–e116. doi: 10.1016/S2214-109X(13)70145-1 25104651
2. Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson NC, Desai U. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg. 1991;22: 102–108. 2038468
3. Li LX, Turner JE. Transplantation of retinal pigment epithelial cells to immature and adult rat hosts: short- and long-term survival characteristics. Exp Eye Res. 1988;47: 771–785. doi: 10.1016/0014-4835(88)90044-9 3197776
4. Johnson AA, Bachman LA, Gilles BJ, Cross SD, Stelzig KE, Resch ZT, et al. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation. Investig Opthalmology Vis Sci. 2015;56: 4619. doi: 10.1167/iovs.15-16910 26200502
5. Pennington BO, Clegg DO, Melkoumian ZK, Hikita ST. Defined Culture of Human Embryonic Stem Cells and Xeno-Free Derivation of Retinal Pigmented Epithelial Cells on a Novel, Synthetic Substrate: Synthetic Substrate for Stem Cell and RPE Culture. STEM CELLS Transl Med. 2015;4: 165–177. doi: 10.5966/sctm.2014-0179 25593208
6. Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack DJ. A Simple and Scalable Process for the Differentiation of Retinal Pigment Epithelium From Human Pluripotent Stem Cells. STEM CELLS Transl Med. 2013;2: 341–354. doi: 10.5966/sctm.2012-0106 23585288
7. Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc. 2009;4: 811–824. doi: 10.1038/nprot.2009.51 19444239
8. Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. The Lancet. 2012;379: 713–720.
9. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous Induced Stem-Cell–Derived Retinal Cells for Macular Degeneration. N Engl J Med. 2017;376: 1038–1046. doi: 10.1056/NEJMoa1608368 28296613
10. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36: 328–337. doi: 10.1038/nbt.4114 29553577
11. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10: eaao4097. doi: 10.1126/scitranslmed.aao4097 29618560
12. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. The Lancet. 2015;385: 509–516.
13. Kamao H, Mandai M, Ohashi W, Hirami Y, Kurimoto Y, Kiryu J, et al. Evaluation of the Surgical Device and Procedure for Extracellular Matrix–Scaffold–Supported Human iPSC–Derived Retinal Pigment Epithelium Cell Sheet Transplantation. Investig Opthalmology Vis Sci. 2017;58: 211. doi: 10.1167/iovs.16-19778 28114582
14. Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration. Ophthalmol Retina. 2019; S2468653019300909. doi: 10.1016/j.oret.2019.04.021 31248784
15. Diniz B, Thomas P, Thomas B, Ribeiro R, Hu Y, Brant R, et al. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a MonolayerSubretinal Implantation of RPE Cells From hESC. Invest Ophthalmol Vis Sci. 2013;54: 5087–5096. doi: 10.1167/iovs.12-11239 23833067
16. Reh TA. Photoreceptor Transplantation in Late Stage Retinal Degeneration. Investig Opthalmology Vis Sci. 2016;57: ORSFg1. doi: 10.1167/iovs.15-17659 27116664
17. McUsic AC, Lamba DA, Reh TA. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials. 2012;33: 1396–1405. doi: 10.1016/j.biomaterials.2011.10.083 22115999
18. Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11: eaat5580. doi: 10.1126/scitranslmed.aat5580 30651323
19. Worthington KS, Wiley LA, Kaalberg EE, Collins MM, Mullins RF, Stone EM, et al. Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomater. 2017;55: 385–395. doi: 10.1016/j.actbio.2017.03.039 28351682
20. Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, et al. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater. 2019;94: 204–218. doi: 10.1016/j.actbio.2019.04.057 31055121
21. Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater. 2016;31: 61–70. doi: 10.1016/j.actbio.2015.11.028 26621699
22. Kundu J, Michaelson A, Baranov P, Chiumiento M, Nigl T, Young MJ, et al. Interphotoreceptor matrix based biomaterial: Impact on human retinal progenitor cell attachment and differentiation. J Biomed Mater Res B Appl Biomater. 2018;106: 891–899. doi: 10.1002/jbm.b.33901 28419733
23. Hughes B, Gallemore R, Miller SS. Transport mechanisms in the retinal pigment epithelium. In: Marmor M, Wolfensberger T, editors. The retinal pigment epithelium. New York, NY: Oxford University; 1998. pp. 103–134.
24. Gandhi JK, Manzar Z, Bachman LA, Andrews-Pfannkoch C, Knudsen T, Hill M, et al. Fibrin hydrogels as a xenofree and rapidly degradable support for transplantation of retinal pigment epithelium monolayers. Acta Biomater. 2018;67: 134–146. doi: 10.1016/j.actbio.2017.11.058 29233750
25. Undas A, Ariens RAS. Fibrin Clot Structure and Function: A Role in the Pathophysiology of Arterial and Venous Thromboembolic Diseases. Arterioscler Thromb Vasc Biol. 2011;31: e88–e99. doi: 10.1161/ATVBAHA.111.230631 21836064
26. Spotnitz WD. Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive—a Laboratory and Clinical Perspective. ISRN Surg. 2014;2014: 1–28. doi: 10.1155/2014/203943 24729902
27. de Oliveira PRC, Berger AR, Chow DR. Use of Evicel Fibrin Sealant in Optic Disc Pit-Associated Macular Detachment. Ophthalmic Surg Lasers Imaging Retina. 2017;48: 358–363. doi: 10.3928/23258160-20170329-13 28419404
28. Scalcione C, Ortiz-Vaquerizas D, Said DG, Dua HS. Fibrin glue as agent for sealing corneal and conjunctival wound leaks. Eye. 2018;32: 463–466. doi: 10.1038/eye.2017.227 29075013
29. Marmorstein AD. The polarity of the retinal pigment epithelium. Traffic. 2001;2: 867–872. doi: 10.1034/j.1600-0854.2001.21202.x 11737824
30. Marmorstein AD, Marmorstein LY. The challenge of modeling macular degeneration in mice. Trends Genet. 2007;23: 225–231. doi: 10.1016/j.tig.2007.03.001 17368622
31. Sanchez I, Martin R, Ussa F, Fernandez-Bueno I. The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol. 2011;249: 475–482. doi: 10.1007/s00417-011-1617-9 21287191
32. Panda A, Kumar S, Kumar A, Bansal R, Bhartiya S. Fibrin glue in ophthalmology. Indian J Ophthalmol. 2009;57: 371. doi: 10.4103/0301-4738.55079 19700876
33. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27: 1735–1740. doi: 10.1016/j.biomaterials.2005.09.019 16198413
34. Lü J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9: 325–341. doi: 10.1586/erm.09.15 19435455
35. Pillai CKS, Sharma CP. Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. J Biomater Appl. 2010;25: 291–366. doi: 10.1177/0885328210384890 20971780
36. Bakri SJ, Alniemi ST. Fibrotic Encapsulation of a Dexamethasone Intravitreal Implant Following Vitrectomy and Silicone Oil for Rhegmatogenous Retinal Detachment. Ophthalmic Surg Lasers Imaging Retina. 2014;45: 243–245. doi: 10.3928/23258160-20140501-02 24806700
37. Pichler L. Parameters of coagulation and fibrinolysis in different animal species—A literature based comparison. Wien Tierarztl Monatsschr. 2008;95: 282–295.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy