Burden and risk factors of cutaneous leishmaniasis in a peri-urban settlement in Kenya, 2016
Autoři:
Isaac Ngere aff001; Waqo Gufu Boru aff002; Abdikadir Isack aff002; Joshua Muiruri aff002; Mark Obonyo aff002; Sultani Matendechero aff003; Zeinab Gura aff002
Působiště autorů:
Global Health Program-Kenya, Washington State University, Nairobi, Kenya
aff001; Field Epidemiology and Laboratory Training Program, Nairobi, Kenya
aff002; Ministry of Health, Nairobi, Republic of Kenya
aff003
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227697
Souhrn
Background
Cutaneous leishmaniasis is a neglected disease known to cause significant morbidity among the poor. We investigated a suspected outbreak to determine the magnitude of cases, characterize the cases and identify risk factors of cutaneous leishmaniasis in Gilgil, a peri-urban settlement in Central Kenya.
Methods
Hospital records for the period 2010–2016 were reviewed and additional cases were identified through active case search. Clinical diagnosis of cutaneous leishmaniasis was made based on presence of ulcerative, nodular or papular skin lesion. The study enrolled 58 cases matched by age and neighbourhood to 116 controls in a case control study. Data was collected using structured questionnaires and simple proportions, means and medians were computed, and logistic regression models were constructed for analysis of individual, indoor and outdoor risk factors.
Results
Of the 255 suspected cases of cutaneous leishmaniasis identified, females constituted 56% (142/255) and the median age was 7 years (IQR 7–21). Cases occurred in clusters and up to 43% of cases originated from Gitare (73/255) and Kambi-Turkana (36/255) villages. A continuous transmission pattern was depicted throughout the period under review. Individual risk factors included staying outside the residence in the evening after sunset (OR 4.1, CI 1.2–16.2) and visiting forests (OR 4.56, CI 2.04–10.22). Sharing residence with a case (OR 14.4, CI 3.8–79.3), residing in a thatched house (OR 7.9, CI 1.9–45.7) and cracked walls (OR 2.3, CI 1.0–4.9) were identified among indoor factors while sighting rock hyraxes near residence (OR 5.3, CI 2.2–12.7), residing near a forest (OR 7.8, CI 2.8–26.4) and having a close neighbour with cutaneous leishmaniasis (OR 6.8, CI 2.8–16.0) were identified among outdoor factors.
Conclusions
We identify a large burden of cutaneous leishmaniasis in Gilgil with evidence of individual, indoor and outdoor factors of disease spread. The role of environmental factors and rodents in disease transmission should be investigated further
Klíčová slova:
Forests – Leishmaniasis – Lesions – Medical risk factors – Ulcers – Valleys – Skin diseases – Hyraxes
Zdroje
1. WHO| Leishmaniasis. WHO | Burden and distribution [Internet]. WHO. 2013 [cited 2016 Jan 14]. Available from: http://www.who.int/leishmaniasis/burden/en/
2. Oryan A. Risk Factors Associated with Leishmaniasis. Trop Med Surg [Internet]. 2014 [cited 2016 Jan 16];02(03). Available from: http://www.esciencecentral.org/journals/risk-factors-associated-with-leishmaniasis-2329-9088.1000e118.php?aid = 25396
3. Reithinger R, Mohsen M, Aadil K, Sidiqi M, Erasmus P, Coleman PG. Anthroponotic Cutaneous Leishmaniasis, Kabul, Afghanistan. Emerg Infect Dis. 2003 Jun;9(6):727–9. doi: 10.3201/eid0906.030026 12781016
4. Reithinger R, Dujardin J-C, Louzir H, Pirmez C, Alexander B, Brooker S. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7(9):581–596. doi: 10.1016/S1473-3099(07)70209-8 17714672
5. Desjeux P. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg. 2001 Jun 1;95(3):239–43. doi: 10.1016/s0035-9203(01)90223-8 11490989
6. WHO. Leishmaniasis Key Facts [Internet]. [cited 2019 Dec 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis
7. Alexander B, Maroli M. Control of phlebotomine sandflies. Med Vet Entomol. 2003;17(1):1–18. doi: 10.1046/j.1365-2915.2003.00420.x 12680919
8. WHO. Leishmanniasis Country Profiles- Kenya [Internet]. 2017 [cited 2018 Jun 7]. Available from: http://www.who.int/leishmaniasis/burden/Kenya_2015-hl.pdf?ua=1
9. Toroitich AK. Epidemiology of Cutaneous Leishmaniasis due to Leishhania Tropica at Utut, Nakuru District. Kenya [Internet]. University of Nairobi; 1995 [cited 2016 Jul 18]. Available from: http://erepository.uonbi.ac.ke/handle/11295/25964
10. Odiwuor S, Muia A, Gert Van der A, Magiri C, Maes I, Kirigi G, et al. Identification of Leishmania tropica from micro-foci of cutaneous leishmaniasis in the Kenyan Rift Valley [Internet]. 2012 [cited 2016 Jul 18]. Available from: https://www.researchgate.net/profile/Gert_Van_der_Auwera/publication/233982866
11. Sang D, Ashford RW, Njeru WK. A zoonotic focus of cutaneous leishmaniasis due to Leishmania tropica af Utut, Rift Valley Province, Kenya. Trans R Soc Trop Med Hyg. 1994 Jan 1;88(1):35–7. doi: 10.1016/0035-9203(94)90486-3 8153992
12. Anjili CO, Ngumbi PM, Kaburi JC, Irungu LW. The phlebotomine sandfly fauna (Diptera: Psychodidae) of Kenya. J Vector Borne Dis. 2011;48(4):183. 22297278
13. Kaimowitz D. Not by Bread alone-Forests and rural livelihoods in SubSaharan Africa. European Forest Institute; 2003.
14. Mwangi SW. Partnerships in urban environmental management: an approach to solving environmental problems in Nakuru, Kenya. Environ Urban. 2000;12(2):77–92.
15. Nakuru County. Nakuru County County Integrated Development Plan-2018-2022.pdf [Internet]. [cited 2019 Oct 22]. Available from: https://nakuru.go.ke/wp-content/uploads/2018/11/NAKURU-COUNTY-CIDP-2018-2022-FINAL..pdf
16. QGIS Development Team. QGIS Geographic Information System [Internet]. 2009 [cited 2019 Jan 30]. Available from: http://qgis.org
17. GIS | International Livestock Research Institute [Internet]. [cited 2019 Jan 30]. Available from: https://www.ilri.org/GIS
18. Nakuru County. Nakuru County Integrated Development Plan-2013-2017.pdf [Internet]. [cited 2019 Oct 23]. Available from: https://www.nakuru.go.ke/wp-content/uploads/2014/03/Nakuru-COUNTY-INTERGRATED-DEV-PLAN-2013-2017.pdf
19. Ministry of Health, Kenya- 2010. Malaria Indicator Survey 2010 [Internet]. 2010 [cited 2015 Feb 2]. Available from: http://dhsprogram.com/pubs/pdf/MIS7/MIS7.pdf
20. Dean A, Sullivan K, Soe M. OpenEpi: Open Source Epidemiologic Statistics for Public Health [Internet]. [cited 2018 Jun 8]. Available from: http://www.openepi.com
21. Sang D, Ashford R. W., Njeru W. K.. A zoonotic focus of cutaneous leishmaniasis due to Leishmania tropica af Utut, Rift Valley Province, Kenya [Internet]. 1993 [cited 2016 Jan 14]. Available from: http://trstmh.oxfordjournals.org/content/88/1/35.short
22. Ministry of Health, Kenya- Kenya Health Information System [Internet]. 2018 [cited 2018 Nov 6]. Available from: https://hiskenya.org/dhis-web-reporting/showDataSetReportForm.action
23. Mutinga MJ, Kamau CC, Basimike M, Mutero CM, Kyai FM. Studies on the epidemiology of leishmaniasis in Kenya: flight range of phlebotomine sandflies in Marigat, Baringo District. East Afr Med J. 1992 Jan;69(1):9–13. 1628553
24. Rangel EF, Lainson R. Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Mem Inst Oswaldo Cruz. 2009 Nov;104(7):937–54. doi: 10.1590/s0074-02762009000700001 20027458
25. Mutinga MJ. A review of investigations on leishmaniasis vectors in Kenya. Parassitologia. 1991 Dec;33 Suppl:453–61.
26. Mutinga MJ, Basimike M, Kamau CC, Mutero CM. Epidemiology of leishmaniases in Kenya. Natural host preference of wild caught phlebotomine sandflies in Baringo District, Kenya. East Afr Med J. 1990 May;67(5):319–27. 2390954
27. Castellucci L, Cheng LH, Araujo C, Guimarães LH, Lessa H, Machado P, et al. Familial aggregation of mucosal leishmaniasis in northeast Brazil. Am J Trop Med Hyg. 2005;73(1):69–73. 16014836
28. Blackwell JM, Black GF, Peacock CS, Miller EN, Sibthorpe D, Gnananandha D, et al. Immunogenetics of leishmanial and mycobacterial infections: the Belem Family Study. Philos Trans R Soc B Biol Sci. 1997 Sep 29;352(1359):1331–45.
29. Cabrera M. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med. 1995 Nov 1;182(5):1259–64. doi: 10.1084/jem.182.5.1259 7595196
30. Graves PM, Richards FO, Ngondi J, Emerson PM, Shargie EB, Endeshaw T, et al. Individual, household and environmental risk factors for malaria infection in Amhara, Oromia and SNNP regions of Ethiopia. Trans R Soc Trop Med Hyg. 2009 Dec;103(12):1211–20. doi: 10.1016/j.trstmh.2008.11.016 19144366
31. Killeen GF, Githure JI, Beier JC. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999 Jul 1;61(1):109–13. doi: 10.4269/ajtmh.1999.61.109 10432066
32. Muigai R, Githure JI, Gachihi GS, Were JBO, Leeuwenburg J, Perkins PV. Cutaneous leishmaniasis caused by Leishmania major in Baringo District, Kenya. Trans R Soc Trop Med Hyg. 1987 Jul 1;81(4):600–2. doi: 10.1016/0035-9203(87)90422-6 3445343
33. Votýpka J, Kasap OE, Volf P, Kodym P, Alten B. Risk factors for cutaneous leishmaniasis in Cukurova region, Turkey. Trans R Soc Trop Med Hyg. 2012 Mar;106(3):186–90. doi: 10.1016/j.trstmh.2011.12.004 22284721
34. Weigle KA, Santrich C, Martinez F, Valderrama L, Saravia NG. Epidemiology of cutaneous leishmaniasis in Colombia: environmental and behavioral risk factors for infection, clinical manifestations, and pathogenicity. J Infect Dis. 1993;168(3):709–714. doi: 10.1093/infdis/168.3.709 8354913
35. Yadon ZE, Rodrigues LC, Davies CR, Quigley MA. Indoor and peridomestic transmission of American cutaneous leishmaniasis in northwestern Argentina: a retrospective case-control study. Am J Trop Med Hyg. 2003;68(5):519–526. doi: 10.4269/ajtmh.2003.68.519 12812336
36. CDC-Centers for Disease Control and. CDC—Leishmaniasis—Resources for Health Professionals [Internet]. 2015 [cited 2016 Feb 12]. Available from: http://www.cdc.gov/parasites/leishmaniasis/health_professionals/index.html
37. Blanco VM, Cossio A, Martinez JD, Saravia NG. Clinical and Epidemiologic Profile of Cutaneous Leishmaniasis in Colombian Children: Considerations for Local Treatment. Am J Trop Med Hyg. 2013 Aug 7;89(2):359–64. doi: 10.4269/ajtmh.12-0784 23798581
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy