Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration
Autoři:
Jeanette M. Metzger aff001; Helen N. Matsoff aff001; Alexandra D. Zinnen aff001; Rachel A. Fleddermann aff001; Viktoriya Bondarenko aff001; Heather A. Simmons aff001; Andres Mejia aff001; Colleen F. Moore aff003; Marina E. Emborg aff001
Působiště autorů:
Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States of America
aff001; Cellular and Molecular Pathology Graduate Program, University of Wisconsin–Madison, Madison, WI, United States of America
aff002; Department of Psychology, University of Wisconsin–Madison, Madison, WI, United States of America
aff003; Department of Medical Physics, University of Wisconsin–Madison, Madison, WI, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 15(1)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226999
Souhrn
Cardiac dysautonomia is a common nonmotor symptom of Parkinson’s disease (PD) associated with loss of sympathetic innervation to the heart and decreased plasma catecholamines. Disease-modifying strategies for PD cardiac neurodegeneration are not available, and biomarkers of target engagement are lacking. Systemic administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) recapitulates PD cardiac dysautonomia pathology. We recently used positron emission tomography (PET) to visualize and quantify cardiac sympathetic innervation, oxidative stress, and inflammation in adult male rhesus macaques (Macaca mulatta; n = 10) challenged with 6-OHDA (50mg/kg; i.v.). Twenty-four hours post-intoxication, the animals were blindly and randomly assigned to receive daily doses of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (n = 5; 5mg/kg p.o.) or placebo (n = 5). Quantification of PET radioligand uptake showed increased oxidative stress and inflammation one week after 6-OHDA which resolved to baseline levels by twelve weeks, at which time pioglitazone-treated animals showed regionally preserved sympathetic innervation. Here we report post mortem characterization of heart and adrenal tissue in these animals compared to age and sex matched normal controls (n = 5). In the heart, 6-OHDA-treated animals showed a significant loss of sympathetic nerve fibers density (tyrosine hydroxylase (TH)-positive fibers). The anatomical distribution of markers of sympathetic innervation (TH) and inflammation (HLA-DR) significantly correlated with respective in vivo PET findings across left ventricle levels and regions. No changes were found in alpha-synuclein immunoreactivity. Additionally, CD36 protein expression was increased at the cardiomyocyte intercalated discs following PPARγ-activation compared to placebo and control groups. Systemic 6-OHDA decreased adrenal medulla expression of catecholamine producing enzymes (TH and aromatic L-amino acid decarboxylase) and circulating levels of norepinephrine, which were attenuated by PPARγ-activation. Overall, these results validate in vivo PET findings of cardiac sympathetic innervation, oxidative stress, and inflammation and illustrate cardiomyocyte CD36 upregulation as a marker of PPARγ target engagement.
Klíčová slova:
Cardiac ventricles – Cardiomyocytes – Heart – Inflammation – Nerve fibers – Oxidative stress – Parkinson disease – Positron emission tomography
Zdroje
1. Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson's disease. Parkinsonism Relat Disord. 2010;16(4):252–5. Epub 2010/01/26. doi: 10.1016/j.parkreldis.2009.12.010 20097595.
2. Li ST, Dendi R, Holmes C, Goldstein DS. Progressive loss of cardiac sympathetic innervation in Parkinson's disease. Ann Neurol. 2002;52(2):220–3. Epub 2002/09/05. doi: 10.1002/ana.10236 12210793.
3. Wong KK, Raffel DM, Bohnen NI, Altinok G, Gilman S, Frey KA. 2-Year Natural Decline of Cardiac Sympathetic Innervation in Idiopathic Parkinson Disease Studied with 11C-Hydroxyephedrine PET. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2017;58(2):326–31. Epub 2016/08/20. doi: 10.2967/jnumed.116.176891 27539837; PubMed Central PMCID: PMC5288743.
4. Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2005;76(2):249–51. Epub 2005/01/18. doi: 10.1136/jnnp.2004.037028 15654042; PubMed Central PMCID: PMC1739515.
5. Wong KK, Raffel DM, Koeppe RA, Frey KA, Bohnen NI, Gilman S. Pattern of cardiac sympathetic denervation in idiopathic Parkinson disease studied with 11C hydroxyephedrine PET. Radiology. 2012;265(1):240–7. Epub 2012/07/31. doi: 10.1148/radiol.12112723 22843766; PubMed Central PMCID: PMC3447171.
6. Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, et al. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson's disease. Brain. 2008;131(Pt 3):642–50. Epub 2007/12/15. doi: 10.1093/brain/awm302 18079166.
7. Mitsui J, Saito Y, Momose T, Shimizu J, Arai N, Shibahara J, et al. Pathology of the sympathetic nervous system corresponding to the decreased cardiac uptake in 123I-metaiodobenzylguanidine (MIBG) scintigraphy in a patient with Parkinson disease. J Neurol Sci. 2006;243(1–2):101–4. Epub 2006/01/31. doi: 10.1016/j.jns.2005.11.034 16442563.
8. Amino T, Orimo S, Itoh Y, Takahashi A, Uchihara T, Mizusawa H. Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain pathology (Zurich, Switzerland). 2005;15(1):29–34. Epub 2005/03/23. doi: 10.1111/j.1750-3639.2005.tb00097.x 15779234.
9. Nakamura T, Hirayama M, Hara T, Hama T, Watanabe H, Sobue G. Does cardiovascular autonomic dysfunction contribute to fatigue in Parkinson's disease? Movement Disorders. 2011;26(10):1869–74. doi: 10.1002/mds.23744 21542023
10. Nakamura T, Hirayama M, Hara T, Mizutani Y, Suzuki J, Watanabe H, et al. Role of cardiac sympathetic nerves in preventing orthostatic hypotension in Parkinson's disease. Parkinsonism Relat Disord. 2014;20(4):409–14. Epub 2014/01/28. doi: 10.1016/j.parkreldis.2014.01.003 24462345.
11. Nakamura T, Hirayama M, Yamashita F, Uchida K, Hama T, Watanabe H, et al. Lowered cardiac sympathetic nerve performance in response to exercise in Parkinson's disease. Mov Disord. 2010;25(9):1183–9. Epub 2010/07/16. doi: 10.1002/mds.23127 20629159.
12. Velseboer DC, de Haan RJ, Wieling W, Goldstein DS, de Bie RM. Prevalence of orthostatic hypotension in Parkinson's disease: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2011;17(10):724–9. doi: 10.1016/j.parkreldis.2011.04.016 21571570.
13. Goldstein DS. Dysautonomia in Parkinson's disease: neurocardiological abnormalities. Lancet Neurol. 2003;2(11):669–76. Epub 2003/10/24. doi: 10.1016/s1474-4422(03)00555-6 14572735.
14. Jain S, Goldstein DS. Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis. Neurobiol Dis. 2012;46(3):572–80. doi: 10.1016/j.nbd.2011.10.025 22094370; PubMed Central PMCID: PMC3299874.
15. Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson's disease. Neurology. 2002;58(8):1247–55. Epub 2002/04/24. doi: 10.1212/wnl.58.8.1247 11971094.
16. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson's disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S210–2. doi: 10.1016/S1353-8020(11)70065-7 22166438.
17. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson's disease. Front Neuroanat. 2015;9:91. doi: 10.3389/fnana.2015.00091 26217195; PubMed Central PMCID: PMC4495335.
18. Kapadia R, Yi JH, Vemuganti R. Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Frontiers in bioscience: a journal and virtual library. 2008;13:1813–26. Epub 2007/11/06. doi: 10.2741/2802 17981670; PubMed Central PMCID: PMC2734868.
19. Swanson CR, Joers V, Bondarenko V, Brunner K, Simmons HA, Ziegler TE, et al. The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation. 2011;8:91. doi: 10.1186/1742-2094-8-91 21819568; PubMed Central PMCID: PMC3166925.
20. Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, et al. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson's disease. Neurobiol Dis. 2014;71:280–91. Epub 2014/08/20. doi: 10.1016/j.nbd.2014.08.011 25134730.
21. Joers V, Dilley K, Rahman S, Jones C, Shultz J, Simmons H, et al. Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS One. 2014;9(8):e104850. doi: 10.1371/journal.pone.0104850 25133405; PubMed Central PMCID: PMC4136781.
22. Joers V, Seneczko K, Goecks NC, Kamp TJ, Hacker TA, Brunner KG, et al. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys. PLoS One. 2012;7(4):e35371. doi: 10.1371/journal.pone.0035371 22539969; PubMed Central PMCID: PMC3335153.
23. Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL. Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem. 2007;103(1):145–56. doi: 10.1111/j.1471-4159.2007.04699.x 17573824.
24. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol. 2001;65(2):135–72. doi: 10.1016/s0301-0082(01)00003-x 11403877.
25. Rocha NP, de Miranda AS, Teixeira AL. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed research international. 2015;2015:628192–. Epub 2015/07/29. doi: 10.1155/2015/628192 26295044.
26. Metzger JM, Moore CF, Boettcher CA, Brunner KG, Fleddermann RA, Matsoff HN, et al. In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. NPJ Parkinsons Dis. 2018;4:22. Epub 2018/07/25. doi: 10.1038/s41531-018-0057-1 30038956; PubMed Central PMCID: PMC6045637.
27. Bakdash JZ, Marusich LR. Repeated Measures Correlation. Frontiers in psychology. 2017;8:456. Epub 2017/04/26. doi: 10.3389/fpsyg.2017.00456 28439244; PubMed Central PMCID: PMC5383908.
28. Simmons HA. Age-Associated Pathology in Rhesus Macaques (Macaca mulatta). Veterinary pathology. 2016;53(2):399–416. Epub 2016/02/13. doi: 10.1177/0300985815620628 26864889.
29. Joers V, Emborg ME. Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson's disease. Am J Nucl Med Mol Imaging. 2014;4(2):125–59. 24753981; PubMed Central PMCID: PMC3992208.
30. Daubner SC, Le T, Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys. 2011;508(1):1–12. doi: 10.1016/j.abb.2010.12.017 21176768; PubMed Central PMCID: PMC3065393.
31. Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson's disease. Journal of neurology, neurosurgery, and psychiatry. 1999;67(2):189–94. doi: 10.1136/jnnp.67.2.189 10406987.
32. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord. 2015;30(12):1591–601. Epub 2015/10/17. doi: 10.1002/mds.26424 26474316.
33. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clinical radiology. 2010;65(7):500–16. Epub 2010/06/15. doi: 10.1016/j.crad.2010.03.011 20541650; PubMed Central PMCID: PMC3150531.
34. Tai YC, Ruangma A, Rowland D, Siegel S, Newport DF, Chow PL, et al. Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 2005;46(3):455–63. Epub 2005/03/08. 15750159.
35. Obata A, Yoshimi E, Waki A, Lewis JS, Oyama N, Welch MJ, et al. Retention mechanism of hypoxia selective nuclear imaging/radiotherapeutic agent cu-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) in tumor cells. Annals of nuclear medicine. 2001;15(6):499–504. Epub 2002/02/08. doi: 10.1007/bf02988502 11831397.
36. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. Journal of nuclear medicine: official publication, Society of Nuclear Medicine. 1997;38(7):1155–60. Epub 1997/07/01. 9225812.
37. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C, Environmental carcinogenesis & ecotoxicology reviews. 2009;27(2):120–39. Epub 2009/05/05. doi: 10.1080/10590500902885684 19412858.
38. Bird JL, Izquierdo-Garcia D, Davies JR, Rudd JH, Probst KC, Figg N, et al. Evaluation of translocator protein quantification as a tool for characterising macrophage burden in human carotid atherosclerosis. Atherosclerosis. 2010;210(2):388–91. Epub 2010/01/09. doi: 10.1016/j.atherosclerosis.2009.11.047 20056222; PubMed Central PMCID: PMC2884178.
39. Turkheimer FE, Rizzo G, Bloomfield PS, Howes O, Zanotti-Fregonara P, Bertoldo A, et al. The methodology of TSPO imaging with positron emission tomography. Biochemical Society transactions. 2015;43(4):586–92. Epub 2015/11/10. doi: 10.1042/BST20150058 26551697; PubMed Central PMCID: PMC4613512.
40. Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism. 2012;32(1):1–5. Epub 2011/10/20. doi: 10.1038/jcbfm.2011.147 22008728; PubMed Central PMCID: PMC3323305.
41. Hondares E, Mora O, Yubero P, Rodriguez de la Concepcion M, Iglesias R, Giralt M, et al. Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: an autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation. Endocrinology. 2006;147(6):2829–38. Epub 2006/03/04. doi: 10.1210/en.2006-0070 16513826.
42. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 1998;93(2):241–52. Epub 1998/05/06. doi: 10.1016/s0092-8674(00)81575-5 9568716.
43. Yu M, Jiang M, Chen Y, Zhang S, Zhang W, Yang X, et al. Inhibition of Macrophage CD36 Expression and Cellular Oxidized Low Density Lipoprotein (oxLDL) Accumulation by Tamoxifen: A PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR (PPAR)gamma-DEPENDENT MECHANISM. J Biol Chem. 2016;291(33):16977–89. Epub 2016/07/01. doi: 10.1074/jbc.M116.740092 27358406; PubMed Central PMCID: PMC5016103.
44. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell. 1998;93(2):229–40. Epub 1998/05/06. doi: 10.1016/s0092-8674(00)81574-3 9568715.
45. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. The American journal of clinical nutrition. 2011;93(4):884s–90. Epub 2011/02/04. doi: 10.3945/ajcn.110.001917 21289221; PubMed Central PMCID: PMC3057551.
46. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71. Epub 2003/07/02. doi: 10.1073/pnas.1032913100 12832613; PubMed Central PMCID: PMC166252.
47. Hamza AA, Fikry EM, Abdallah W, Amin A. Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats. Sci Rep. 2018;8(1):9827. Epub 2018/07/01. doi: 10.1038/s41598-018-28029-1 29959408; PubMed Central PMCID: PMC6026169.
48. Hammarstedt A, Pihlajamaki J, Graham TE, Kainulainen S, Kahn BB, Laakso M, et al. High circulating levels of RBP4 and mRNA levels of aP2, PGC-1alpha and UCP-2 predict improvement in insulin sensitivity following pioglitazone treatment of drug-naive type 2 diabetic subjects. J Intern Med. 2008;263(4):440–9. Epub 2008/03/08. doi: 10.1111/j.1365-2796.2007.01914.x 18324929; PubMed Central PMCID: PMC2676866.
49. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392–9. Epub 2005/04/28. doi: 10.2337/diabetes.54.5.1392 15855325.
50. Pagel-Langenickel I, Bao J, Joseph JJ, Schwartz DR, Mantell BS, Xu X, et al. PGC-1alpha integrates insulin signaling, mitochondrial regulation, and bioenergetic function in skeletal muscle. J Biol Chem. 2008;283(33):22464–72. Epub 2008/06/27. doi: 10.1074/jbc.M800842200 18579525; PubMed Central PMCID: PMC2504883.
51. Simon DK, Simuni T, Elm J, Clark-Matott J, Graebner AK, Baker L, et al. Peripheral Biomarkers of Parkinson's Disease Progression and Pioglitazone Effects. J Parkinsons Dis. 2015. Epub 2015/10/08. doi: 10.3233/jpd-150666 26444095.
52. Garcia-Ruiz I, Solis-Munoz P, Fernandez-Moreira D, Munoz-Yague T, Solis-Herruzo JA. Pioglitazone leads to an inactivation and disassembly of complex I of the mitochondrial respiratory chain. BMC biology. 2013;11:88. Epub 2013/08/07. doi: 10.1186/1741-7007-11-88 23915000; PubMed Central PMCID: PMC3751493.
53. Ahn HY, Kim HH, Hwang JY, Park C, Cho BY, Park YJ. Effects of Pioglitazone on Nonalcoholic Fatty Liver Disease in the Absence of Constitutive Androstane Receptor Expression. PPAR Res. 2018;2018:9568269. Epub 2018/10/27. doi: 10.1155/2018/9568269 30363699; PubMed Central PMCID: PMC6181001.
54. Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Science signaling. 2009;2(72):re3. Epub 2009/05/28. doi: 10.1126/scisignal.272re3 19471024; PubMed Central PMCID: PMC2811062.
55. Umbarawan Y, Syamsunarno M, Koitabashi N, Obinata H, Yamaguchi A, Hanaoka H, et al. Myocardial fatty acid uptake through CD36 is indispensable for sufficient bioenergetic metabolism to prevent progression of pressure overload-induced heart failure. Sci Rep. 2018;8(1):12035. Epub 2018/08/15. doi: 10.1038/s41598-018-30616-1 30104639; PubMed Central PMCID: PMC6089997.
56. Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): Understanding the regulation of cellular fatty acid uptake. Biochimie. 2017;136:21–6. Epub 2016/12/26. doi: 10.1016/j.biochi.2016.12.007 28013071.
57. Aguer C, Foretz M, Lantier L, Hebrard S, Viollet B, Mercier J, et al. Increased FAT/CD36 cycling and lipid accumulation in myotubes derived from obese type 2 diabetic patients. PLoS One. 2011;6(12):e28981. Epub 2011/12/24. doi: 10.1371/journal.pone.0028981 22194967; PubMed Central PMCID: PMC3241688.
58. Greenwalt DE, Scheck SH, Rhinehart-Jones T. Heart CD36 expression is increased in murine models of diabetes and in mice fed a high fat diet. The Journal of clinical investigation. 1995;96(3):1382–8. Epub 1995/09/01. doi: 10.1172/JCI118173 7544802; PubMed Central PMCID: PMC185760.
59. Peng J, Huan Y, Jiang Q, Sun SJ, Jia CM, Shen ZF. Effects and Potential Mechanisms of Pioglitazone on Lipid Metabolism in Obese Diabetic KKAy Mice. PPAR Res. 2014;2014:538183. Epub 2014/05/07. doi: 10.1155/2014/538183 24799887; PubMed Central PMCID: PMC3988943.
60. Ouwens DM, Diamant M, Fodor M, Habets DDJ, Pelsers M, El Hasnaoui M, et al. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia. 2007;50(9):1938–48. Epub 2007/07/20. doi: 10.1007/s00125-007-0735-8 17639306; PubMed Central PMCID: PMC2039861.
61. van Oort MM, van Doorn JM, Bonen A, Glatz JF, van der Horst DJ, Rodenburg KW, et al. Insulin-induced translocation of CD36 to the plasma membrane is reversible and shows similarity to that of GLUT4. Biochim Biophys Acta. 2008;1781(1–2):61–71. Epub 2008/01/03. doi: 10.1016/j.bbalip.2007.11.006 18167317.
62. Yang KJ, Noh JR, Kim YH, Gang GT, Hwang JH, Yang SJ, et al. Differential modulatory effects of rosiglitazone and pioglitazone on white adipose tissue in db/db mice. Life sciences. 2010;87(13–14):405–10. Epub 2010/08/21. doi: 10.1016/j.lfs.2010.08.002 20723549.
63. Motojima K, Passilly P, Peters JM, Gonzalez FJ, Latruffe N. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. J Biol Chem. 1998;273(27):16710–4. Epub 1998/06/27. doi: 10.1074/jbc.273.27.16710 9642225.
64. Bogacka I, Gettys TW, de Jonge L, Nguyen T, Smith JM, Xie H, et al. The effect of beta-adrenergic and peroxisome proliferator-activated receptor-gamma stimulation on target genes related to lipid metabolism in human subcutaneous adipose tissue. Diabetes care. 2007;30(5):1179–86. Epub 2007/03/14. doi: 10.2337/dc06-1962 17351280.
65. Wilmsen HM, Ciaraldi TP, Carter L, Reehman N, Mudaliar SR, Henry RR. Thiazolidinediones upregulate impaired fatty acid uptake in skeletal muscle of type 2 diabetic subjects. Am J Physiol Endocrinol Metab. 2003;285(2):E354–62. Epub 2003/04/18. doi: 10.1152/ajpendo.00491.2001 12700163.
66. Akiyama TE, Sakai S, Lambert G, Nicol CJ, Matsusue K, Pimprale S, et al. Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol. 2002;22(8):2607–19. Epub 2002/03/23. doi: 10.1128/MCB.22.8.2607-2619.2002 11909955; PubMed Central PMCID: PMC133709.
67. Eto M, Sumi H, Fujimura H, Yoshikawa H, Sakoda S. Pioglitazone promotes peripheral nerve remyelination after crush injury through CD36 upregulation. Journal of the peripheral nervous system: JPNS. 2008;13(3):242–8. Epub 2008/10/11. doi: 10.1111/j.1529-8027.2008.00183.x 18844791.
68. Gosset P, Charbonnier AS, Delerive P, Fontaine J, Staels B, Pestel J, et al. Peroxisome proliferator-activated receptor gamma activators affect the maturation of human monocyte-derived dendritic cells. European journal of immunology. 2001;31(10):2857–65. Epub 2001/10/10. doi: 10.1002/1521-4141(2001010)31:10<2857::aid-immu2857>3.0.co;2-x 11592060.
69. Hirakata M, Tozawa R, Imura Y, Sugiyama Y. Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun. 2004;323(3):782–8. Epub 2004/09/24. doi: 10.1016/j.bbrc.2004.08.151 15381068.
70. Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci. 2012;32(48):17321–31. Epub 2012/12/01. doi: 10.1523/JNEUROSCI.1569-12.2012 23197723.
71. Da Silva Morais A, Abarca-Quinones J, Horsmans Y, Starkel P, Leclercq IA. Peroxisome proliferated-activated receptor gamma ligand, Pioglitazone, does not prevent hepatic fibrosis in mice. International journal of molecular medicine. 2007;19(1):105–12. Epub 2006/12/05. 17143554.
72. Qi N, Kazdova L, Zidek V, Landa V, Kren V, Pershadsingh HA, et al. Pharmacogenetic evidence that cd36 is a key determinant of the metabolic effects of pioglitazone. J Biol Chem. 2002;277(50):48501–7. Epub 2002/10/18. doi: 10.1074/jbc.M206655200 12384507.
73. Rasouli N, Yao-Borengasser A, Varma V, Spencer HJ, McGehee RE Jr., Peterson CA, et al. Association of scavenger receptors in adipose tissue with insulin resistance in nondiabetic humans. Arteriosclerosis, thrombosis, and vascular biology. 2009;29(9):1328–35. Epub 2009/08/12. doi: 10.1161/ATVBAHA.109.186957 19667111; PubMed Central PMCID: PMC2755066.
74. Wierzbicki M, Chabowski A, Zendzian-Piotrowska M, Gorski J. Differential effects of in vivo PPAR alpha and gamma activation on fatty acid transport proteins expression and lipid content in rat liver. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society. 2009;60(1):99–106. Epub 2009/05/15. 19439812.
75. Barbieri M, Di Filippo C, Esposito A, Marfella R, Rizzo MR, D'Amico M, et al. Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-gamma-knockout (CM-PGKO) mice. PLoS One. 2012;7(4):e35999. Epub 2012/05/09. doi: 10.1371/journal.pone.0035999 22563432; PubMed Central PMCID: PMC3338561.
76. Goldstein DS, Holmes C, Lopez GJ, Wu T, Sharabi Y. Cardiac sympathetic denervation predicts PD in at-risk individuals. Parkinsonism Relat Disord. 2017. Epub 2017/10/17. doi: 10.1016/j.parkreldis.2017.10.003 29032895.
77. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson's disease. Mov Disord. 2003;18(8):890–7. Epub 2003/07/31. doi: 10.1002/mds.10461 12889078.
78. Münch G, Nguyen NT, Nekolla S, Ziegler S, Muzik O, Chakraborty P, et al. Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation. 2000;101(5):516–23. doi: 10.1161/01.cir.101.5.516 10662749.
79. Asghar O, Arumugam P, Armstrong I, Ray S, Schmitt M, Malik RA. Iodine-123 metaiodobenzylguanidine scintigraphy for the assessment of cardiac sympathetic innervation and the relationship with cardiac autonomic function in healthy adults using standardized methods. Nucl Med Commun. 2017;38(1):44–50. Epub 2016/11/30. doi: 10.1097/MNM.0000000000000608 27898646; PubMed Central PMCID: PMC5131722.
80. Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessels. 2003;18(1):32–9. Epub 2003/03/20. doi: 10.1007/s003800300005 12644879.
81. Stoddard SL. The adrenal medulla and Parkinson's disease. Reviews in the neurosciences. 1994;5(4):293–307. Epub 1994/10/01. doi: 10.1515/revneuro.1994.5.4.293 7697198.
82. Stoddard SL, Merkel GJ, Cook JA, Zinsmeister AR, Carmichael SW. Adrenal medulla and Parkinson's disease. Microscopy research and technique. 1994;29(2):151–4. Epub 1994/10/01. doi: 10.1002/jemt.1070290212 7812036.
83. Stoddard SL, Tyce GM, Ahlskog JE, Zinsmeister AR, Carmichael SW. Decreased catecholamine content in parkinsonian adrenal medullae. Experimental neurology. 1989;104(1):22–7. doi: 10.1016/0014-4886(89)90004-6 2924866.
84. Senard JM, Rascol O, Durrieu G, Tran MA, Berlan M, Rascol A, et al. Effects of yohimbine on plasma catecholamine levels in orthostatic hypotension related to Parkinson disease or multiple system atrophy. Clinical neuropharmacology. 1993;16(1):70–6. Epub 1993/02/01. doi: 10.1097/00002826-199302000-00008 8422659.
85. Mannelli M, Cantini G, Poli G, Mangoni M, Nesi G, Canu L, et al. Role of the PPAR-gamma system in normal and tumoral pituitary corticotropic cells and adrenal cells. Neuroendocrinology. 2010;92 Suppl 1:23–7. Epub 2010/09/21. doi: 10.1159/000314312 20829614.
86. Pan ZQ, Xie D, Choudhary V, Seremwe M, Tsai YY, Olala L, et al. The effect of pioglitazone on aldosterone and cortisol production in HAC15 human adrenocortical carcinoma cells. Molecular and cellular endocrinology. 2014;394(1–2):119–28. Epub 2014/07/20. doi: 10.1016/j.mce.2014.07.007 25038520; PubMed Central PMCID: PMC4237224.
87. Uruno A, Matsuda K, Noguchi N, Yoshikawa T, Kudo M, Satoh F, et al. Peroxisome proliferator-activated receptor-{gamma} suppresses CYP11B2 expression and aldosterone production. Journal of molecular endocrinology. 2011;46(1):37–49. Epub 2010/11/26. doi: 10.1677/JME-10-0088 21106862.
88. Simuni T, Kieburtz K, Tilley B, Elm J, Ravina B, Babcock D, et al. Pioglitazone in early Parkinson's disease: a phase 2, multicentre, double-blind, randomised trial. Lancet Neurol. 2015;14(8):795–803. Epub 2015/06/28. doi: 10.1016/S1474-4422(15)00144-1 26116315; PubMed Central PMCID: PMC4574625.
89. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain. 2013;136(Pt 8):2419–31. Epub 2013/07/26. doi: 10.1093/brain/awt192 23884810; PubMed Central PMCID: PMC3722357.
90. Cheng HC, Ulane CM, Burke RE. Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol. 2010;67(6):715–25. Epub 2010/06/03. doi: 10.1002/ana.21995 20517933; PubMed Central PMCID: PMC2918373.
91. Brauer R, Bhaskaran K, Chaturvedi N, Dexter DT, Smeeth L, Douglas I. Glitazone Treatment and Incidence of Parkinson's Disease among People with Diabetes: A Retrospective Cohort Study. PLoS medicine. 2015;12(7):e1001854. Epub 2015/07/22. doi: 10.1371/journal.pmed.1001854 26196151; PubMed Central PMCID: PMC4511413.
Článek vyšel v časopise
PLOS One
2020 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Je libo čepici místo mozkového implantátu?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
Nejčtenější v tomto čísle
- Severity of misophonia symptoms is associated with worse cognitive control when exposed to misophonia trigger sounds
- Chemical analysis of snus products from the United States and northern Europe
- Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
- Effect of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation in drinking water on chicken crop and caeca microbiome