Identification of QTLs for resistance to maize rough dwarf disease using two connected RIL populations in maize
Autoři:
Xintao Wang aff001; Qing Yang aff001; Ziju Dai aff001; Yan Wang aff001; Yingying Zhang aff001; Baoquan Li aff001; Wenming Zhao aff002; Junjie Hao aff003
Působiště autorů:
Crop Designing Center, Henan Academy of Agricultural Sciences, Zhengzhou, China
aff001; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
aff002; Plant Protection Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226700
Souhrn
Maize rough dwarf disease (MRDD) is a significant viral disease caused by rice black-streaked dwarf virus (RBSDV) in China, which results in 30% yield losses in affected summer maize-growing areas. In this study, two connected recombinant inbred line (RIL) populations were constructed to elucidate the genetic basis of resistance during two crop seasons. Ten quantitative trait loci (QTLs) for resistance to MRDD were detected in the two RILs. Individual QTLs accounted for 4.97–23.37% of the phenotypic variance explained (PVE). The resistance QTL (qZD-MRDD8-1) with the largest effect was located in chromosome bin 8.03, representing 16.27–23.37% of the PVE across two environments. Interestingly, one pair of common significant QTLs was located in the similar region on chromosome 4 in both populations, accounting for 7.11–9.01% of the PVE in Zheng58×D863F (RIL-ZD) and 9.43–13.06% in Zheng58×ZS301 (RIL-ZZ). A total of five QTLs for MRDD resistance trait showed significant QTL-by-Environment interactions (QEI). Two candidate genes associated with resistance (GDSL-lipase and RPP13-like gene) which were higher expressed in resistant inbred line D863F than in susceptible inbred line Zheng58, were located in the physical intervals of the major QTLs on chromosomes 4 and 8, respectively. The identified QTLs will be studied further for application in marker-assisted breeding in maize genetic improvement of MRDD resistance.
Klíčová slova:
Genetic loci – Inbred strains – Leaves – Linkage mapping – Maize – Polymerase chain reaction – Quantitative trait loci – Veterinary diseases
Zdroje
1. Ali F, Yan J. Disease resistance in maize and the role of molecular breeding in defending against global threat. Journal of Integrative Plant Biology. 2012; 54(3): 134–151. doi: 10.1111/j.1744-7909.2012.01105.x 22333113
2. Lv P, Zhang J, Su K, Liu W, Liu P, Yang J, et al. Effects of rough dwarf disease on yield and plant characteristics of summer maize. Journal of Maize Sciences. 2010; 18(2): 113–116.
3. Fang S, Yu J, Feng J, Han C, Li D, Liu Y. Identification of rice black-streaked dwarf fijivirus in maize with rough dwarf disease in China. Archives of Virology. 2001; 146(1): 167–170. doi: 10.1007/s007050170200 11266211
4. Tao YF, Liu QC, Xu ML. The research progress on maize rough dwarf disease. Journal of Maize Sciences. 2013; 21(1): 149–152.
5. Milne RG, Lovisolo O. Maize rough dwarf and related viruses. Advances in Virus Research. 1977; 21: 267–341. doi: 10.1016/s0065-3527(08)60764-2 324252
6. Dovas C, Eythymiou K, Katis N. First report of Maize rough dwarf virus (MRDV) on maize crops in Greece. Plant Pathology. 2004; 53: 238.
7. Wang AL, Wang JJ, Chen CH. Study on maize rough dwarf virus incidence law and its integrated control technique. Journal of Maize Sciences. 2005; 13(4): 114–116.
8. Zhang H, Chen J, Lei J, Adams MJ. Sequence analysis shows that a dwarfing disease on rice, wheat and maize in China is caused by Rice Black-streaked Dwarf Virus. European Journal of Plant Pathology. 2001; 107(5): 563–567.
9. Yang XF, Wen GB, Yang Y. Resistance identification and analysis of different maize germplasms to maize rough dwarf virus. Journal of Maize Sciences. 2010; 18: 144–146.
10. Wang AL, Zhao DF, Chen ZH, Wang JJ, Shao XS, Wei GY. Studies on genetic basis and recurrent selection effect of inbred line maize resistance to MRDV. Journal of Maize Sciences. 2000; 8: 80–82.
11. Shang YF, Zhao J, Du S, Lu X, Wang S, Sun H, et al. Identification and investigation on resistance to virus diseases of both maize commercial varieties and germplasm at seedling stage. Shandong Agricultural Sciences. 2001; 4: 3–5.
12. Lu YG, Di DP, Miao HQ, Tian LZ. Identification and analysis on resistance of introduced foreign and domestic maize inbreds to MRDV. Journal of Hebei Agricultural Sciences. 2001; 5: 22–24.
13. Xue L, Zhang D, Xu L, Jin MM, Peng CJ, Xu CW. Mining and analyzing genetic diversity for maize rough dwarf disease resistant gerplasms and its application in maize breeding. Acta Agronomica Sinica. 2011; 37: 2123–2129.
14. Di Renzo MA, Bonamico NC, Díaz DG, Ibañez MA, Faricelli ME, Balzarini MG, et al. Microsatellite markers linked to QTL for resistance to Mal de Río Cuarto disease in Zea mays L. Journal of Agricultural Science. 2004; 142: 289–295.
15. Wang F, Zhang YS, Zhuang YL, Qin GZ, Zhang JR. Molecular mapping of three loci conferring resistance to Maize (Zea mays L.) rough dwarf disease. Molecular Plant Breeding. 2007; 5: 178–179.
16. Luan J, Wang F, Li Y, Zhang B, Zhang J. Mapping quantitative trait loci conferring resistance to rice black-streaked virus in maize (Zea mays L.). Theoretical and Applied Genetics. 2012; 125(4):781–791. doi: 10.1007/s00122-012-1871-1 22562145
17. Shi L, Hao Z, Weng J, Xie C, Liu C, Zhang D, et al. Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Molecular Breeding. 2012; 30(2): 615–625. https://doi.org/10.1007/s11032-011-9652-0
18. Tao Y, Liu Q, Wang H, Zhang Y, Huang X, Wang B, et al. Identification and fine-mapping of a QTL, qMrdd1, that confers recessive resistance to maize rough dwarf disease. BMC Plant Biology. 2013; 13: 145. doi: 10.1186/1471-2229-13-145 24079304
19. Chen G, Wang X, Hao J, Yan J, Ding J. Genome-Wide Association Implicates Candidate Genes Conferring Resistance to Maize Rough Dwarf Disease in Maize. PloS ONE. 2015; 10(11): e0142001. doi: 10.1371/journal.pone.0142001 26529245
20. Li R, Song W, Wang B, Wang J, Zhang D, Zhang Q, et al. Identification of a locus conferring dominant resistance to maize rough dwarf disease in maize. Scientific Reports. 2018; 8(1): 3248. doi: 10.1038/s41598-018-21677-3 29459698
21. Shang W, Zhang Y, Wei H, Kong X, Jiang F, Liu B. SSR Linkage Map Construction and QTL Identification for Resistance Gene of MRDV in Maize. Shandong Agricultural Sciences. 2011; 12: 1–6.
22. Bonamico NC, Di Renzo MA, Ibañez MA, Borghi M, Díaz DG, Salerno J, et al. (2012). QTL analysis of resistance to Mal de Río Cuarto disease in maize using recombinant inbred lines. Journal of Agricultural Science. 2012; 150(5): 619–629.
23. Bonamico NC, Di Renzo MA, Borghi M, Ibañez MA, Díaz DG, Balzarini MG. Mapping QTL for a multivariate measure of the reaction with the Mal de Río Cuarto virus. Journal of Basic and Applied Genetics. 2013; 24: 11–21.
24. Lan J, Gong Y, Song C. Preliminary QTL Analysis on Resistance of Maize Combination QR-001/QS-001 to Rough Dwarf Disease. Shandong Agricultural Sciences. 2015; 47(2): 90–95.
25. Rossi EA, Borghi ML, Di Renzo MA, Bonamico NC. Quantitative Trait loci (QTL) Identification for Resistance to Mal de Rio Cuarto Virus (MRCV) in Maize Based on Segregate Population. The Open Agriculture Journal. 2015; 9: 48–55.
26. Liu C, Weng J, Zhang D, Zhang X, Yang X, Shi L, et al. Genome-wide association study of resistance to rough dwarf disease in maize. European Journal of Plant Pathology. 2014; 139(1): 205–216. https://doi.org/10.1007/s10658-014-0383-z
27. Hao D, Cheng Y, Chen G, Lu H, Shi M, Zhang Z, et al. Identification of significant single nucleotide polymorphisms for resistance to maize rough dwarf disease in elite maize (Zea mays L.) inbred lines. Euphytica. 2015; 203: 109–120.
28. Di DP, Miao HQ, Lu YG, Tian LZ (2005) Study on the method of inoculation and identification for the resistance of maize to maize rough dwarf virus. Journal of Agricultural University of Hebei. 2005; 28: 76–78.
29. Miao HQ, Tian LZ, Lu YG, Di DP, Chen XP. One simple grading standard for maize rough dwarf virus, Plant Protection. 2005; 31(6): 87–89.
30. Grau CR, Radke VL, Gillespie FL. Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Diseases. 1982; 66: 506–508. https://doi.org/10.1094/PD-66-506
31. Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research. 1980; 8(19): 4321–4325. doi: 10.1093/nar/8.19.4321 7433111
32. Lei M, Li HH, Zhang LY, Wang JK. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal. 2015; 3(3): 269–283.
33. Wang SB, Wen YJ, Ren WL, Ni YL, Zhang J, Feng JY, et al. Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Scientific Reports. 2016, 6: 29951. doi: 10.1038/srep29951 27435756
34. Zhang YW, Wen YJ, Dunwell JM, Zhang YM. QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Computational and Structural Biotechnology Journal. in press.
35. Li H, Bradbury P, Ersoz E, Buckler ES, Wang J. Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PloS ONE. 2011; 6(3): e17573. doi: 10.1371/journal.pone.0017573 21423655
36. Li S, Wang J, Zhang L. Inclusive Composite Interval Mapping of QTL by Environment Interactions in Biparental Populations. PloS ONE. 2015; 10(7): e0132414. doi: 10.1371/journal.pone.0132414 26161656
37. Livak KJ, Schmittgen TD. Analysis of relative gene expressiondata using real-time quantitative PCR and the 2−ΔΔCTmethod. Methods. 2001; 25(4): 402–408. doi: 10.1006/meth.2001.1262 11846609
38. Wang X, Wang Y, Yang Q, Liu J, Wang X, Hao J. Screening and genetic diversity analysis of maize germplasm resources that resistant to maize rough dwarf virus. Molecular Plant Breeding. 2017; 15(12): 5172–5177.
39. Liu C, Hua J, Liu C, Zhang D, Hao Z, Yong H, et al. Fine mapping of a quantitative trait locus conferring resistance to maize rough dwarf disease. Theoretical and Applied Genetics. 2016; 129(12): 2333–2242. doi: 10.1007/s00122-016-2770-7 27544523
40. Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Scientific Reports. 2016; 6: 19444. doi: 10.1038/srep19444 26787347
41. Zhou Y, Xu Z, Duan C, Chen Y, Meng Q, Wu J, et al. Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Journal of Experimental Botany. 2016; 67(15): 4593–4609. doi: 10.1093/jxb/erw244 27493226
42. EI-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MG. Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends in Plant Science. 2014; 19(6): 390–398. doi: 10.1016/j.tplants.2014.01.001 24491827
43. Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics. 2009; 119(5): 913–930. doi: 10.1007/s00122-009-1099-x 19597726
44. Li P, Zhang Y, Yin S, Zhu P, Pan T, Xu Y, et al. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes. Frontiers in Plant Science. 2018; 9: 229. doi: 10.3389/fpls.2018.00229 29527220
45. Oh IS, Park AR, Bae MS, Kwon SJ, Kim YS, Lee JE, et al. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. The Plant Cell. 2005; 17(10): 2832–2847. doi: 10.1105/tpc.105.034819 16126835
46. Bittner-Eddy PD, Beynon JL. The Arabidopsis downy mildew resistance gene, RPP13-Nd, functions independently of NDR1 and EDS1 and does not require the accumulation of salicylic acid. Molecular Plant-Microbe Interactions. 2001; 14(3): 416–421. doi: 10.1094/MPMI.2001.14.3.416 11277440
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy