4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study
Autoři:
Lucian Beer aff001; Stephan H. Polanec aff001; Pascal A. T. Baltzer aff001; Georg Schatzl aff003; Dietmar Georg aff004; Christian Schestak aff001; Anja Dutschke aff001; Harald Herrmann aff004; Peter Mazal aff006; Alexander K. Brendel aff006; Shahrokh F. Shariat aff003; Helmut Ringl aff001; Thomas H. Helbich aff001; Paul Apfaltrer aff001
Působiště autorů:
Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
aff001; Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, United Kingdom
aff002; Department of Urology, Medical University of Vienna, Vienna, Austria
aff003; Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
aff004; Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University Vienna, Austria
aff005; Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
aff006; Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
aff007
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225673
Souhrn
Purpose
Advanced forms of prostate cancer (PCa) radiotherapy with either external beam therapy or brachytherapy delivery techniques aim for a focal boost and thus require accurate lesion localization and lesion segmentation for subsequent treatment planning. This study prospectively evaluated dynamic contrast-enhanced computed tomography (DCE-CT) for the detection of prostate cancer lesions in the peripheral zone (PZ) using qualitative and quantitative image analysis compared to multiparametric magnet resonance imaging (mpMRI) of the prostate.
Methods
With local ethics committee approval, 14 patients (mean age, 67 years; range, 57–78 years; PSA, mean 8.1 ng/ml; range, 3.5–26.0) underwent DCE-CT, as well as mpMRI of the prostate, including standard T2, diffusion-weighted imaging (DWI), and DCE-MRI sequences followed by transrectal in-bore MRI-guided prostate biopsy. Maximum intensity projections (MIP) and DCE-CT perfusion parameters (CTP) were compared between healthy and malignant tissue. Two radiologists independently rated image quality and the tumor lesion delineation quality of PCa using a five-point ordinal scale. MIP and CTP were compared using visual grading characteristics (VGC) and receiver operating characteristics (ROC)/area under the curve (AUC) analysis.
Results
The PCa detection rate ranged between 57 to 79% for the two readers for DCE-CT and was 92% for DCE-MRI. DCE-CT perfusion parameters in PCa tissue in the PZ were significantly different compared to regular prostate tissue and benign lesions. Image quality and lesion visibility were comparable between DCE-CT and DCE-MRI (VGC: AUC 0.612 and 0.651, p>0.05).
Conclusion
Our preliminary results suggest that it is feasible to use DCE-CT for identification and visualization, and subsequent segmentation for focal radiotherapy approaches to PCa.
Klíčová slova:
Biopsy – Cancer treatment – Computed axial tomography – Lesions – Magnetic resonance imaging – Prostate cancer – Prostate gland – Radiation therapy
Zdroje
1. Hollmann BG, van Triest B, Ghobadi G, Groenendaal G, de Jong J, et al. (2015) Gross tumor volume and clinical target volume in prostate cancer: How do satellites relate to the index lesion. Radiotherapy and oncology 115: 96–100. doi: 10.1016/j.radonc.2015.01.021 25796092
2. Daniel M, Kuess P, Andrzejewski P, Nyholm T, Helbich T, et al. (2018) Impact of androgen deprivation therapy on apparent diffusion coefficient and T2w MRI for histogram and texture analysis with respect to focal radiotherapy of prostate cancer. Strahlentherapie und Onkologie: 1–10.
3. Chopra S, Toi A, Taback N, Evans A, Haider MA, et al. (2012) Pathological predictors for site of local recurrence after radiotherapy for prostate cancer. International Journal of Radiation Oncology* Biology* Physics 82: e441–e448.
4. Monninkhof EM, van Loon JW, van Vulpen M, Kerkmeijer LG, Pos FJ, et al. (2018) Standard whole prostate gland radiotherapy with and without lesion boost in prostate cancer: Toxicity in the FLAME randomized controlled trial. Radiotherapy and Oncology 127: 74–80. doi: 10.1016/j.radonc.2017.12.022 29336835
5. Munck Af Rosenschold P, Zelefsky MJ, Apte AP, Jackson A, Oh JH, et al. (2018) Image-guided radiotherapy reduces the risk of under-dosing high-risk prostate cancer extra-capsular disease and improves biochemical control. Radiat Oncol 13: 64. doi: 10.1186/s13014-018-0978-1 29650035
6. Andrzejewski P, Kuess P, Knäusl B, Pinker K, Georg P, et al. (2015) Feasibility of dominant intraprostatic lesion boosting using advanced photon-, proton-or brachytherapy. Radiotherapy and Oncology 117: 509–514. doi: 10.1016/j.radonc.2015.07.028 26349588
7. Webb S (2003) The physical basis of IMRT and inverse planning. The British journal of radiology 76: 678–689. doi: 10.1259/bjr/65676879 14512327
8. Löser A, Beyer B, Carl CO, Löser B, Nagaraj Y, et al. (2018) Toxicity and risk factors after combined high-dose-rate brachytherapy and external beam radiation therapy in men≥ 75 years with localized prostate cancer. Strahlentherapie und Onkologie: 1–9.
9. Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, et al. (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7: 949–960. doi: 10.1038/nrc2288 18034185
10. Künzel LA, Dohm OS, Alber M, Zips D, Thorwarth D (2018) Automatic replanning of VMAT plans for different treatment machines: A template-based approach using constrained optimization. Strahlentherapie und Onkologie 194: 921–928. doi: 10.1007/s00066-018-1319-x 29846751
11. Ives EP, Burke MA, Edmonds PR, Gomella LG, Halpern EJ (2005) Quantitative computed tomography perfusion of prostate cancer: correlation with whole-mount pathology. Clinical prostate cancer 4: 109–112. doi: 10.3816/cgc.2005.n.018 16197611
12. Korporaal JG, van den Berg CA, Jeukens CR, Groenendaal G, Moman MR, et al. (2010) Dynamic Contrast-enhanced CT for Prostate Cancer: Relationship between Image Noise, Voxel Size, and Repeatability 1. Radiology 256: 976–984. doi: 10.1148/radiol.10092068 20663968
13. Korporaal JG, van Vulpen M, van den Berg CA, van der Heide UA (2012) Tracer kinetic model selection for dynamic contrast-enhanced computed tomography imaging of prostate cancer. Investigative radiology 47: 41–48. doi: 10.1097/RLI.0b013e31821c0ea7 21610505
14. Luczynska E, Blecharz P, Dyczek S, Stelmach A, Petralia G, et al. (2014) Perfusion CT is a valuable diagnostic method for prostate cancer: a prospective study of 94 patients. ecancermedicalscience 8.
15. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, et al. (2016) PI-RADS prostate imaging–reporting and data system: 2015, version 2. European urology 69: 16–40. doi: 10.1016/j.eururo.2015.08.052 26427566
16. Polanec S, Helbich T, Margreiter M, Klingler H, Kubin K, et al. Magnetic resonance imaging-guided prostate biopsy: institutional analysis and systematic review; 2014. Georg Thieme Verlag KG. pp. 501–507.
17. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, et al. (2016) The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 40: 244–252. doi: 10.1097/PAS.0000000000000530 26492179
18. Polanec SH, Lazar M, Wengert GJ, Bickel H, Spick C, et al. (2018) 3D T2-weighted imaging to shorten multiparametric prostate MRI protocols. Eur Radiol 28: 1634–1641. doi: 10.1007/s00330-017-5120-5 29134351
19. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33: 159–174. 843571
20. Bongartz G, Golding S, Jurik A, Leonardi M, Van Persijn Van Meerten E, et al. (2004) European guidelines for multislice computed tomography. European Commission.
21. Böckelmann F, Hammon M, Lettmaier S, Fietkau R, Bert C, et al. (2019) Penile bulb sparing in prostate cancer radiotherapy. Strahlentherapie und Onkologie 195: 153–163. doi: 10.1007/s00066-018-1377-0 30315483
22. Tamihardja J, Zenk M, Flentje M (2019) MRI-guided localization of the dominant intraprostatic lesion and dose analysis of volumetric modulated arc therapy planning for prostate cancer. Strahlentherapie und Onkologie 195: 145–152. doi: 10.1007/s00066-018-1364-5 30209535
23. Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, et al. (2007) Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology 245: 176–185. doi: 10.1148/radiol.2451061502 17717328
24. Jia JB, Houshyar R, Verma S, Uchio E, Lall C (2016) Prostate cancer on computed tomography: A direct comparison with multi-parametric magnetic resonance imaging and tissue pathology. European journal of radiology 85: 261–267. doi: 10.1016/j.ejrad.2015.10.013 26526901
25. Glazer D, Davenport M, Khalatbari S, Cohan R, Ellis J, et al. (2015) Mass-like peripheral zone enhancement on CT is predictive of higher-grade (Gleason 4+ 3 and higher) prostate cancer. Abdominal imaging 40: 560–570. doi: 10.1007/s00261-014-0233-7 25193787
26. Osimani M, Bellini D, Di Cristofano C, Palleschi G, Petrozza V, et al. (2012) Perfusion MDCT of prostate cancer: correlation of perfusion CT parameters and immunohistochemical markers of angiogenesis. American Journal of Roentgenology 199: 1042–1048. doi: 10.2214/AJR.11.8267 23096177
27. Kim JK, Hong SS, Choi YJ, Park SH, Ahn H, et al. (2005) Wash‐in rate on the basis of dynamic contrast‐enhanced MRI: Usefulness for prostate cancer detection and localization. Journal of Magnetic Resonance Imaging 22: 639–646. doi: 10.1002/jmri.20431 16200542
28. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, et al. (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. American Journal of Roentgenology 198: 1277–1288. doi: 10.2214/AJR.12.8510 22623539
29. Xu XG, Bednarz B, Paganetti H (2008) A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Physics in Medicine & Biology 53: R193.
30. Bonekamp D, Wolf MB, Edler C, Katayama S, Schlemmer HP, et al. (2016) Dynamic contrast enhanced MRI monitoring of primary proton and carbon ion irradiation of prostate cancer using a novel hypofractionated raster scan technique. Radiother Oncol 120: 313–319. doi: 10.1016/j.radonc.2016.05.012 27237059
31. Roe K, Mikalsen LT, van der Kogel AJ, Bussink J, Lyng H, et al. (2012) Vascular responses to radiotherapy and androgen-deprivation therapy in experimental prostate cancer. Radiat Oncol 7: 75. doi: 10.1186/1748-717X-7-75 22621752
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy