#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Neurotherapeutic effects of Ginkgo biloba extract and its terpene trilactone, ginkgolide B, on sciatic crush injury model: A new evidence


Autoři: Dalal G. Al-Adwani aff001;  Waleed M. Renno aff002;  Khaled Y. Orabi aff001
Působiště autorů: Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait aff001;  Department of Anatomy, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait aff002
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226626

Souhrn

Ginkgo biloba leaves extract (GBE) was subjected to neuroprotective-guided fractionation to produce eleven fractions with different polarities and constituents. The intermediate polar fraction was shown to be terpene trilactones-enriched fraction (TEGBE). Out of this fraction, pure ginkgolide B (G-B) was further purified and identified based on its spectral data. The effects of GBE and TEGBE were evaluated in comparison to that of G-B in the crush sciatic nerve injury rat model. To evaluate the neuroprotective effects, sixty Wistar male rats were randomly allocated into 6 groups: naive, sham, crush + normal saline, and three treatment groups; crush + GBE, crush + TEGBE, and crush + G-B. Treatments were given one hour following injury, and once daily for 14 days. Neurobehavioral tests, histomorphological examinations, and immunohistochemical analysis of the sciatic nerve and the spinal cord were performed at weeks 3 and 6 post-injury. GBE, TEGBE and G-B were shown to enhance the functional and sensory behavioral parameters and to protect the histological and the ultrastructural elements in the sciatic nerve. Additionally, all treatments prevented spinal cord neurons from further deterioration. It was shown that G-B has the most significant potential effects among all treatments with values that were nearly comparable to those of sham and naive groups.

Klíčová slova:

Astrocytes – Axons – Nerve fibers – Neurons – Sciatic nerves – Terpenes – Myelin sheath


Zdroje

1. van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A. 2009; 1216(11): 2002–2032. doi: 10.1016/j.chroma.2009.01.013 19195661

2. Kim JD, Liu L, Guo W, Meydani M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J Nutr Biochem. 2006; 17(3): 165–176. doi: 10.1016/j.jnutbio.2005.06.006 16169200

3. Li W, Du B, Wang T, Wang S, Zhang J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem Biol Interact. 2009; 177(2): 121–127. doi: 10.1016/j.cbi.2008.10.048 19028473

4. Zhang Q, Zhao XH, Wang ZJ. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicol In Vitro. 2009; 23(5): 797–807. doi: 10.1016/j.tiv.2009.04.007 19397994

5. Kang JW, Kim JH, Song K, Kim SH, Yoon JH, Kim KS. Kaempferol and quercetin, components of Ginkgo biloba extract (EGb 761), induce caspase‐3‐dependent apoptosis in oral cavity cancer cells. Phytother Res. 2010; 24(S1): S77–S82.

6. Smith JV, Luo Y. Elevation of oxidative free radicals in Alzheimer's disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimer's Dis. 2003; 5(4): 287–300.

7. Braquet PG. Platelet-Activating Factor Antagonists: Scientific Background and Possible Clinical Applications. Adv Pharmacol. 1994; 28: 81. 8080821

8. Braquet PG. Ginkgolides: potent platelet activating factor antagonists isolated from Ginkgo biloba L.: chemistry, pharmacology and clinical applications. Drugs future. 1987; 12: 643–699.

9. Panetta T, Marcheselli VL, Braquet P, Spinnewyn B, Bazan NG. Effects of a platelet activating factor antagonist (BN 52021) on free fatty acids, diacylglycerols, polyphosphoinositides and blood flow in the gerbil brain: inhibition of ischemia-reperfusion induced cerebral injury. Biochem Biophys Res Commun. 1987; 149(2): 580–587. doi: 10.1016/0006-291x(87)90407-4 2827647

10. Nakanishi K. Terpene trilactones from Gingko biloba: from ancient times to the 21st century. Bioorg Med Chem. 2005; 13(17): 4987–5000. doi: 10.1016/j.bmc.2005.06.014 15990319

11. Jaracz S, Nakanishi K, Jensen AA, Strømgaard K. Ginkgolides and glycine receptors: a structure–activity relationship study. Chem Eur J. 2004; 10(6): 1507–1518. doi: 10.1002/chem.200305473 15034895

12. Klein J, Chatterjee SS, Loffelholz K. Phospholipid breakdown and choline release under hypoxic conditions: inhibition by bilobalide, a constituent of Ginkgo biloba. Brain Res. 1997; 755(2): 347–350. doi: 10.1016/s0006-8993(97)00239-4 9175905

13. Kiewert C, Kumar V, Hildmann O, Rueda M, Hartmann J, Naik RS, et al. Role of GABAergic antagonism in the neuroprotective effects of bilobalide. Brain Res. 2007; 1128(1): 70–78. doi: 10.1016/j.brainres.2006.10.042 17134681

14. Taylor CA, Braza D, Rice JB, Dillingham T. The incidence of peripheral nerve injury in extremity trauma. Am J Phys Med Rehabil. 2008; 87(5): 381–385. doi: 10.1097/PHM.0b013e31815e6370 18334923

15. Zhang YG, Sheng QS, Wang HK, Lv L, Zhang J, Chen JM, et al. Triptolide improves nerve regeneration and functional recovery following crush injury to rat sciatic nerve. Neurosci Lett. 2014; 561: 198–202. doi: 10.1016/j.neulet.2013.12.068 24406146

16. Zhao L, Liu Q, Chen H, Duan H, Bin P, Liu Q, et al. The effect of 2, 5-hexanedione on myelin protein zero expression, and its mitigation using Ginkgo biloba extract. Biomed Environ Sci. 2011; 24(4): 374–382. doi: 10.3967/0895-3988.2011.04.008 22108326

17. Zhang D, Wu R, Kang H, Hong G, Kang S, Zhang Z. The protective effect of EGB761 on vessels of denervated gastrocnemius in rats and its mechanism. J Huazhong Univ Sci Technolog Med Sci. 2011; 31(6): 789–793. doi: 10.1007/s11596-011-0678-7 22173500

18. Zhu Z, Zhou X, He B, Dai T, Zheng C, Yang C, et al. Ginkgo biloba extract (EGb 761) promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell Mol Neurobiol. 2015; 35(2): 273–282. doi: 10.1007/s10571-014-0122-1 25319407

19. Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol. 1997; 53(2): 121–133. doi: 10.1016/s0006-2952(96)00654-5 9037244

20. Lobstein-Guth A, Briançon-Scheid F, Anton R. Analysis of terpenes from Ginkgo biloba L. by high-performance liquid chromatography. J Chromatogr A. 1983; 267: 431–438.

21. Kim YS, Park HJ, Kim TK, Moon DE, Lee HJ. The effects of Ginkgo biloba extract EGb 761 on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg. 2009; 108(6): 1958–1963. doi: 10.1213/ane.0b013e31819f1972 19448231

22. Renno WM, Al-Maghrebi M, Al-Banaw A. (−)-Epigallocatechin-3-gallate (EGCG) attenuates functional deficits and morphological alterations by diminishing apoptotic gene overexpression in skeletal muscles after sciatic nerve crush injury. Naunyn Schmiedebergs Arch Pharmacol. 2012; 385(8): 807–822. doi: 10.1007/s00210-012-0758-7 22573016

23. Varejão AS, Cabrita AM, Meek MF, Bulas-Cruz J, Melo-Pinto P, Raimondo S, et al. Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J. Neurotrauma. 2004; 21(11): 1652–1670. doi: 10.1089/neu.2004.21.1652 15684656

24. Renno WM, Benov L, Khan KM. Possible role of antioxidative capacity of (−)-epigallocatechin-3-gallate treatment in morphological and neurobehavioral recovery after sciatic nerve crush injury. J Neurosurg Spine. 2017; 27(5): 593–613. doi: 10.3171/2016.10.SPINE16218 28777065

25. Renno WM, Al-Maghrebi M, Alshammari A, George P. (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int. 2013; 62(3): 221–231. doi: 10.1016/j.neuint.2012.12.018 23313191

26. Hussain AM, Renno WM, Sadek HL, Kayali NM, Al-Salem A, Rao MS, et al. Monoamine oxidase-B inhibitor protects degenerating spinal neurons, enhances nerve regeneration and functional recovery in sciatic nerve crush injury model. Neuropharmacology. 2018; 128: 231–243. doi: 10.1016/j.neuropharm.2017.10.020 29054367

27. Mizisin AP, Calcutt N. Diabetic complications consortium from UC San-Diago Neuropathology. 2017 Oct 3 [Cited 2009]. Available form: http://www.diacomp.org

28. Chen X, Cho DB, Yang PC. Double staining immunohistochemistry. N Am J Med Sci. 2010; 2(5): 241–245. doi: 10.4297/najms.2010.2241 22574297

29. Tanaka K, Zhang QL, Webster HD. Myelinated fiber regeneration after sciatic nerve crush: morphometric observations in young adult and aging mice and the effects of macrophage suppression and conditioning lesions. Exp Neurol. 1992; 118(1): 53–61. doi: 10.1016/0014-4886(92)90022-i 1397176

30. Teng BP. PCT International Patent Application 0283158, 2002.

31. van Beek TA. Ginkgolides and bilobalide: their physical, chromatographic and spectroscopic properties. Bioorg Med Chem. 2005; 13(17): 5001–5012. doi: 10.1016/j.bmc.2005.05.056 15993092

32. Lin H, Wang H, Chen D, Gu Y. A dose‐effect relationship of Ginkgo biloba extract to nerve regeneration in a rat model. Microsurgery. 2007; 27(8): 673–677. doi: 10.1002/micr.20430 17941104

33. Park HJ, Lee HG, Kim YS, Lee JY, Jeon JP, Park C, et al. Ginkgo biloba extract attenuates hyperalgesia in a rat model of vincristine-induced peripheral neuropathy. Anesth Analg. 2012; 115(5): 1228–1233. doi: 10.1213/ANE.0b013e318262e170 23011564

34. Jang CH, Cho YB, Choi CH. Effect of Ginkgo biloba extract on recovery after facial nerve crush injury in the rat. Int J Pediatr Otorhinolaryngol. 2012; 76(12): 1823–1826. doi: 10.1016/j.ijporl.2012.09.009 23021527

35. Ma K, Xu L, Zhan H, Zhang S, Pu M, Jonas JB. Dosage dependence of the effect of Ginkgo biloba on the rat retinal ganglion cell survival after optic nerve crush. Eye (Lond). 2009; 23(7): 1598–1604.

36. Kim J, Yokoyama K, Araki S. The effects of Ginkgo biloba extract (GBE) on axonal transport microvasculature and morphology of sciatic nerve in streptozotocin-induced diabetic rats. Environ Health Prev Med. 2000; 5(2): 53–59. doi: 10.1007/BF02932004 21432198

37. Hsu SH, Chang CJ, Tang CM, Lin FT. In vitro and in vivo effects of Ginkgo biloba extract EGb 761 on seeded Schwann cells within poly (DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. J Biomater Appl. 2004; 19(2): 163–182. doi: 10.1177/0885328204045580 15381788

38. Zhang F, Gu Y, Xu J, Li J. Effect of extract of leave Ginkgo biloba on crushed sciatic nerve regeneration. Chin J Microsurg. 2000; 23(4): 279–281.

39. Zheng J, Li B, Cao X, Zhuo W, Zhang G. Alleviation of spinal cord injury by Ginkgolide B via the inhibition of STAT1 expression. Genet Mol Res. 2016; 15(2): 1–7.

40. Yan M, Liu YW, Shao W, Mao XG, Yang M, Ye ZX, et al. EGb761 improves histological and functional recovery in rats with acute spinal cord contusion injury. Spinal Cord. 2016; 54(4): 259–265. doi: 10.1038/sc.2015.156 26481704

41. Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH. Inhibition of NF-κB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci. 2012; 47(4): 652–660. doi: 10.1016/j.ejps.2012.07.016 22850444

42. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005; 50(4): 427–434. doi: 10.1002/glia.20207 15846805

43. Garrison CJ, Dougherty PM, Kajander KC, Carlton SM. Staining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 1991; 565(1): 1–7. doi: 10.1016/0006-8993(91)91729-k 1723019

44. Renno WM, Al-Maghrebi M, Rao MS, Khraishah H. (-)-Epigallocatechin-3-gallate modulates spinal cord neuronal degeneration by enhancing growth-associated protein 43, B-cell lymphoma 2, and decreasing B-cell lymphoma 2-associated x protein expression after sciatic nerve crush injury. J Neurotrauma, 2015; 32(3), 170–184. doi: 10.1089/neu.2014.3491 25025489

45. Jahanshahi M, Nikmahzar EG, Yadollahi N, Ramazani K. Protective effects of Ginkgo biloba extract (EGB 761) on astrocytes of rat hippocampus after exposure with scopolamine. Anat Cell Biol 2012; 45(2): 92–96. doi: 10.5115/acb.2012.45.2.92 22822463

46. Rocher MN, Carre D, Spinnewyn B, Schulz J, Delaflotte S, Pignol B. et al. Long-term treatment with standardized Ginkgo biloba Extract (EGb 761) attenuates cognitive deficits and hippocampal neuron loss in a gerbil model of vascular dementia. Fitoterapia. 2011; 82(7): 1075–1080. doi: 10.1016/j.fitote.2011.07.001 21820038

47. Woolf CJ, Reynolds ML, Molander C, O'Brien C, Lindsay RM, Benowitz LI. The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience. 1990; 34(2): 465–478. doi: 10.1016/0306-4522(90)90155-w 2139720

48. Chen L, Qin J, Cheng C, Niu S, Liu Y, Shi S, et al. Spatiotemporal expression of SSeCKS in injured rat sciatic nerve. Anat Rec. (Hoboken), 2008; 291(5): 527–537.

49. Oliveira DR, Sanada PF, Saragossa AC, Innocenti LR, Oler G, Cerutti JM, et al. Neuromodulatory property of standardized extract Ginkgo biloba L.(EGb 761) on memory: behavioral and molecular evidence. Brain Res. 2009; 1269: 68–89. doi: 10.1016/j.brainres.2008.11.105 19146837

50. Ao Q, Sun XH, Wang AJ, Fu PF, Gong K, Zuo HC, et al. Protective effects of extract of Ginkgo biloba (EGb 761) on nerve cells after spinal cord injury in rats. Spinal Cord. 2006; 44(11): 662–667. doi: 10.1038/sj.sc.3101900 16415923

51. Zhao Z, Liu N, Huang J, Lu PH, Xu XM. Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress‐induced cell death. J Neurochem. 2011; 116(6): 1057–1065. doi: 10.1111/j.1471-4159.2010.07160.x 21182525

52. Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease. Phytother Res. 2004; 18(8): 663–666. doi: 10.1002/ptr.1486 15472919

53. Biber A. Pharmacokinetics of Ginkgo biloba extracts. Pharmacopsychiatry. 2003; 36 Suppl 1: S32–S37.

54. Ude C, Schubert-Zsilavecz M, Wurglics M. Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet. 2013; 52(9): 727–749. doi: 10.1007/s40262-013-0074-5 23703577

55. Rangel-Ordóñez L, Nöldner M, Schubert-Zsilavecz M, Wurglics M. Plasma levels and distribution of flavonoids in rat brain after single and repeated doses of standardized Ginkgo biloba extract EGb 761(R). Planta Med. 2010; 76(15): 1683–1690. doi: 10.1055/s-0030-1249962 20486074


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Současné pohledy na riziko v parodontologii
nový kurz
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#