Effects of metformin administration on endocrine-metabolic parameters, visceral adiposity and cardiovascular risk factors in children with obesity and risk markers for metabolic syndrome: A pilot study
Autoři:
Judit Bassols aff001; José-María Martínez-Calcerrada aff001; Inés Osiniri aff002; Ferran Díaz-Roldán aff003; Silvia Xargay-Torrent aff004; Berta Mas-Parés aff001; Estefanía Dorado-Ceballos aff003; Anna Prats-Puig aff005; Gemma Carreras-Badosa aff004; Francis de Zegher aff006; Lourdes Ibáñez aff007; Abel López-Bermejo aff003
Působiště autorů:
Maternal-Fetal Metabolic Group, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
aff001; Clinical Laboratory, Salut Empordà Foundation, Figueres, Spain
aff002; Pediatrics, Dr. Trueta University Hospital, Girona, Spain
aff003; Pediatric Endocrinology Group, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
aff004; Department of Physical Therapy, EUSES University School, University of Girona, Girona, Spain
aff005; Department of Development & Regeneration, University of Leuven, Leuven, Belgium
aff006; Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children’s Hospital, Barcelona, Spain
aff007; [Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders] CIBERDEM, ISCIII, Madrid, Spain
aff008
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226303
Souhrn
Background
Metformin treatment (1000–2000 mg/day) over 6 months in pubertal children and/or adolescents with obesity and hyperinsulinism is associated with a reduction in body mass index (BMI) and the insulin resistance index (HOMA-IR). We aimed to ascertain if long-term treatment (24 months) with lower doses of metformin (850 mg/day) normalizes the endocrine-metabolic abnormalities, improves body composition, and reduces the carotid intima-media thickness (cIMT) in pre-puberal and early pubertal children with obesity.
Methods
A pilot double-blind, placebo-controlled trial was conducted on 18 pre-puberal and early pubertal (Tanner stage I-II) children with obesity and risk markers for metabolic syndrome. Patients were randomly assigned (1:1) to receive metformin (850 mg/day) or placebo for 24 months. Clinical, biochemical (insulin, lipids, leptin, and high-sensitivity C-reactive protein [hsCRP]), and imaging (body composition [dual-energy X-ray absorptiometry and magnetic resonance imaging]) parameters as well as cIMT (ultrasonography) were assessed at baseline and at 6, 12, and 24 months.
Results
The 12-month treatment tend to cause a reduction in weight standard deviation scores (SDS), BMI-SDS, leptin, leptin–to–high-molecular-weight (HMW) adiponectin ratio, hsCRP, cIMT, fat mass, and liver fat in metformin-treated children compared with placebo. The effect of metformin on the reduction of BMI-SDS, leptin, leptin-to-HMW adiponectin ratio, hsCRP, and liver fat seemed to be maintained after completing the 24 months of treatment. No changes in insulin sensitivity (HOMA-IR) or adverse effects were detected.
Conclusion
In this pilot study, metformin treatment in pre-puberal and early pubertal children with obesity seemed to improve body composition and inflammation markers. Our data encourage the development of future fully powered trials using 850 mg/day metformin in young children, highlighting its excellent tolerance and potential long-term benefits.
Klíčová slova:
Adiponectin – Body Mass Index – Fats – Childhood obesity – Insulin – leptin – Magnetic resonance imaging – Metabolic syndrome
Zdroje
1. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007, 132(6):2087–2102. doi: 10.1053/j.gastro.2007.03.052 17498505
2. Serra-Majem L, Aranceta Bartrina J, Perez-Rodrigo C, Ribas-Barba L, Delgado-Rubio A. Prevalence and deteminants of obesity in Spanish children and young people. The British journal of nutrition. 2006, 96 Suppl 1:S67–72.
3. Weihrauch-Bluher S, Schwarz P, Klusmann JH. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism: clinical and experimental. 2019; 92:147–152.
4. August GP, Caprio S, Fennoy I, Freemark M, Kaufman FR, Lustig RH, et al. Prevention and treatment of pediatric obesity: an endocrine society clinical practice guideline based on expert opinion. The Journal of clinical endocrinology and metabolism. 2008, 93:4576–4599. doi: 10.1210/jc.2007-2458 18782869
5. Yanovski JA, Yanovski SZ. Treatment of pediatric and adolescent obesity. Jama. 2003, 289:1851–1853. doi: 10.1001/jama.289.14.1851 12684365
6. Mead E, Atkinson G, Richter B, Metzendorf MI, Baur L, Finer N, et al. Drug interventions for the treatment of obesity in children and adolescents. The Cochrane database of systematic reviews. 2016, 11:CD012436.
7. Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, et al. Pharmacotherapy of type 2 diabetes: An update. Metabolism: clinical and experimental. 2018, 78:13–42.
8. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England journal of medicine. 2002, 346:393–403. doi: 10.1056/NEJMoa012512 11832527
9. Teranishi T, Ohara T, Maeda K, Zenibayashi M, Kouyama K, Hirota Y, et al. Effects of pioglitazone and metformin on intracellular lipid content in liver and skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism: clinical and experimental. 2007, 56:1418–1424.
10. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001, 107:E55. doi: 10.1542/peds.107.4.e55 11335776
11. Ibanez L, Lopez-Bermejo A, Diaz M, Marcos MV, de Zegher F. Metformin treatment for four years to reduce total and visceral fat in low birth weight girls with precocious pubarche. The Journal of clinical endocrinology and metabolism. 2008, 93:1841–1845.
12. Ibanez L, Lopez-Bermejo A, Diaz M, Marcos MV, de Zegher F. Early metformin therapy to delay menarche and augment height in girls with precocious pubarche. Fertility and sterility. 2011, 95:727–730. doi: 10.1016/j.fertnstert.2010.08.052 20883985
13. Ibanez L, Ong K, Valls C, Marcos MV, Dunger DB, de Zegher F. Metformin treatment to prevent early puberty in girls with precocious pubarche. The Journal of clinical endocrinology and metabolism. 2006, 91:2888–2891. doi: 10.1210/jc.2006-0336 16684823
14. Lentferink YE, Knibbe CAJ, van der Vorst MMJ. Efficacy of Metformin Treatment with Respect to Weight Reduction in Children and Adults with Obesity: A Systematic Review. Drugs. 2018, 78:1887–1901. doi: 10.1007/s40265-018-1025-0 30511324
15. Pastor-Villaescusa B, Canete MD, Caballero-Villarraso J, Hoyos R, Latorre M, Vazquez-Cobela R, et al. Metformin for Obesity in Prepubertal and Pubertal Children: A Randomized Controlled Trial. Pediatrics. 2017, 140:e20164285. doi: 10.1542/peds.2016-4285 28759403
16. Dolinoy DC, Jirtle RL. Environmental epigenomics in human health and disease. Environmental and molecular mutagenesis. 2008, 49:4–8. doi: 10.1002/em.20366 18172876
17. Ibanez L, Lopez-Bermejo A, Diaz M, Marcos MV, de Zegher F. Pubertal metformin therapy to reduce total, visceral, and hepatic adiposity. The Journal of pediatrics. 2010, 156:98–102 e101. doi: 10.1016/j.jpeds.2009.07.012 19772969
18. Ibanez L, Valls C, Marcos MV, Ong K, Dunger DB, De Zegher F. Insulin sensitization for girls with precocious pubarche and with risk for polycystic ovary syndrome: effects of prepubertal initiation and postpubertal discontinuation of metformin treatment. The Journal of clinical endocrinology and metabolism. 2004, 89:4331–4337. doi: 10.1210/jc.2004-0463 15356029
19. Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Archives of disease in childhood. 1969, 44:291–303. doi: 10.1136/adc.44.235.291 5785179
20. Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Archives of disease in childhood. 1970, 45:13–23. doi: 10.1136/adc.45.239.13 5440182
21. Ibanez L, Lopez-Bermejo A, Suarez L, Marcos MV, Diaz M, de Zegher F. Visceral adiposity without overweight in children born small for gestational age. The Journal of clinical endocrinology and metabolism. 2008, 93:2079–2083. doi: 10.1210/jc.2007-2850 18334595
22. de la Puente ML, Canela J, Alvarez J, Salleras L, Vicens-Calvet E. Cross-sectional growth study of the child and adolescent population of Catalonia (Spain). Annals of human biology. 1997, 24:435–452. doi: 10.1080/03014469700005202 9300121
23. Bassols J, Martinez-Calcerrada JM, Prats-Puig A, Carreras-Badosa G, Xargay-Torrent S, Lizarraga-Mollinedo E, et al. Perirenal fat is related to carotid intima-media thickness in children. International journal of obesity. 2018, 42:641–647. doi: 10.1038/ijo.2017.236 29064476
24. Osiniri I, Sitjar C, Soriano-Rodriguez P, Prats-Puig A, Casas-Satre C, Mayol L, et al. Carotid intima-media thickness at 7 years of age: relationship to C-reactive protein rather than adiposity. The Journal of pediatrics. 2012, 160:276–280. doi: 10.1016/j.jpeds.2011.07.020 21875718
25. Gupta SK. Intention-to-treat concept: A review. Perspectives in clinical research. 2011, 2:109–112. doi: 10.4103/2229-3485.83221 21897887
26. Atabek ME, Pirgon O. Use of metformin in obese adolescents with hyperinsulinemia: a 6-month, randomized, double-blind, placebo-controlled clinical trial. Journal of pediatric endocrinology & metabolism: JPEM. 2008, 21:339–348.
27. Burgert TS, Duran EJ, Goldberg-Gell R, Dziura J, Yeckel CW, Katz S, et al. Short-term metabolic and cardiovascular effects of metformin in markedly obese adolescents with normal glucose tolerance. Pediatric diabetes. 2008, 9:567–576. doi: 10.1111/j.1399-5448.2008.00434.x 18761646
28. Clarson CL, Mahmud FH, Baker JE, Clark HE, McKay WM, Schauteet VD, et al. Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance. Endocrine. 2009, 36:141–146. doi: 10.1007/s12020-009-9196-9 19387874
29. Kay JP, Alemzadeh R, Langley G, D’Angelo L, Smith P, Holshouser S. Beneficial effects of metformin in normoglycemic morbidly obese adolescents. Metabolism: clinical and experimental. 2001, 50:1457–1461.
30. Kendall D, Vail A, Amin R, Barrett T, Dimitri P, Ivison F, et al. Metformin in obese children and adolescents: the MOCA trial. The Journal of clinical endocrinology and metabolism. 2013, 98:322–329. doi: 10.1210/jc.2012-2710 23175691
31. Marques P, Limbert C, Oliveira L, Santos MI, Lopes L. Metformin effectiveness and safety in the management of overweight/obese nondiabetic children and adolescents: metabolic benefits of the continuous exposure to metformin at 12 and 24 months. International journal of adolescent medicine and health. 2016, 29.
32. Mauras N, DelGiorno C, Hossain J, Bird K, Killen K, Merinbaum D, et al. Metformin use in children with obesity and normal glucose tolerance—effects on cardiovascular markers and intrahepatic fat. Journal of pediatric endocrinology & metabolism: JPEM. 2012, 25:33–40.
33. Rezvanian H, Hashemipour M, Kelishadi R, Tavakoli N, Poursafa P. A randomized, triple masked, placebo-controlled clinical trial for controlling childhood obesity. World journal of pediatrics: WJP. 2010, 6:317–322. doi: 10.1007/s12519-010-0232-x 21080144
34. Srinivasan S, Ambler GR, Baur LA, Garnett SP, Tepsa M, Yap F, et al. Randomized, controlled trial of metformin for obesity and insulin resistance in children and adolescents: improvement in body composition and fasting insulin. The Journal of clinical endocrinology and metabolism. 2006, 91:2074–2080. doi: 10.1210/jc.2006-0241 16595599
35. Wiegand S, l’Allemand D, Hubel H, Krude H, Burmann M, Martus P, et al. Metformin and placebo therapy both improve weight management and fasting insulin in obese insulin-resistant adolescents: a prospective, placebo-controlled, randomized study. European journal of endocrinology. 2010, 163:585–592. doi: 10.1530/EJE-10-0570 20639355
36. Gomez-Diaz RA, Talavera JO, Pool EC, Ortiz-Navarrete FV, Solorzano-Santos F, Mondragon-Gonzalez R, et al. Metformin decreases plasma resistin concentrations in pediatric patients with impaired glucose tolerance: a placebo-controlled randomized clinical trial. Metabolism: clinical and experimental. 2012, 61:1247–1255.
37. Wilson DM, Abrams SH, Aye T, Lee PD, Lenders C, Lustig RH, et al. Metformin extended release treatment of adolescent obesity: a 48-week randomized, double-blind, placebo-controlled trial with 48-week follow-up. Archives of pediatrics & adolescent medicine. 2010, 164:116–123.
38. Yanovski JA, Krakoff J, Salaita CG, McDuffie JR, Kozlosky M, Sebring NG, et al. Effects of metformin on body weight and body composition in obese insulin-resistant children: a randomized clinical trial. Diabetes. 2011, 60:477–485. doi: 10.2337/db10-1185 21228310
39. Clarson CL, Brown HK, De Jesus S, Jackman M, Mahmud FH, Prapavessis H, et al. Effects of a Comprehensive, Intensive Lifestyle Intervention Combined with Metformin Extended Release in Obese Adolescents. International scholarly research notices. 2014, 2014:659410. doi: 10.1155/2014/659410 27433488
40. Warnakulasuriya LS, Fernando MMA, Adikaram AVN, Thawfeek ARM, Anurasiri WL, Silva RR, et al. Metformin in the Management of Childhood Obesity: A Randomized Control Trial. Childhood obesity. 2018, 14:553–565. doi: 10.1089/chi.2018.0043 30070925
41. van der Aa MP, Elst MA, van de Garde EM, van Mil EG, Knibbe CA, van der Vorst MM. Long-term treatment with metformin in obese, insulin-resistant adolescents: results of a randomized double-blinded placebo-controlled trial. Nutrition & diabetes. 2016, 6:e228.
42. Lentferink YE, van der Aa MP, van Mill E, Knibbe CAJ, van der Vorst MMJ. Long-term metformin treatment in adolescents with obesity and insulin resistance, results of an open label extension study. Nutrition & diabetes. 2018, 8:47.
43. Halpern A, Mancini MC, Magalhaes ME, Fisberg M, Radominski R, Bertolami MC, et al. Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetology & metabolic syndrome. 2010, 2:55.
44. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutrition, metabolism, and cardiovascular diseases: NMCD. 2017, 27:657–669. doi: 10.1016/j.numecd.2017.04.009 28709719
45. Tzanavari T, Varela A, Theocharis S, Ninou E, Kapelouzou A, et al. Metformin protects against infection-induced myocardial dysfunction. Metabolism: clinical and experimental. 2016, 65:1447–1458.
46. Jenkins AJ, Welsh P, Petrie JR. Metformin, lipids and atherosclerosis prevention. Current opinion in lipidology. 2018, 29:346–353. doi: 10.1097/MOL.0000000000000532 29878903
47. Goldberg RB, Temprosa MG, Mather KJ, Orchard TJ, Kitabchi AE, Watson KE, et al. Lifestyle and metformin interventions have a durable effect to lower CRP and tPA levels in the diabetes prevention program except in those who develop diabetes. Diabetes care. 2014, 37:2253–2260. doi: 10.2337/dc13-2471 24824548
48. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation. 2001, 108:1167–1174. doi: 10.1172/JCI13505 11602624
49. McDonagh MS, Selph S, Ozpinar A, Foley C. Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA pediatrics. 2014, 168:178–184. doi: 10.1001/jamapediatrics.2013.4200 24343296
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy