Identification and characterization of compounds from Chrysosporium multifidum, a fungus with moderate antimicrobial activity isolated from Hermetia illucens gut microbiota
Autoři:
Yesenia Correa aff001; Billy Cabanillas aff001; Valérie Jullian aff002; Daniela Álvarez aff001; Denis Castillo aff001; Cédric Dufloer aff002; Beatriz Bustamante aff003; Elisa Roncal aff001; Edgar Neyra aff001; Patricia Sheen aff001; Michel Sauvain aff001
Působiště autorů:
Laboratorios de Investigación y Desarrollo, Universidad Peruana Cayetano Heredia, Lima, Peru
aff001; Unité Mixte de Recherche 152 Pharmacochimie et Biologie pour le Développement, Institut de Recherche pour le Développement, Université Toulouse III–Paul Sabatier, Toulouse, France
aff002; Clinical Mycology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0218837
Souhrn
The gut microbiota of insects is composed of a wide range of microorganisms which produce bioactive compounds that protect their host from pathogenic attack. In the present study, we isolate and identify the fungus Chrysosporium multifidum from the gut of Hermetia illucens larvae. Extract from C. multifidum culture broth supernatant showed moderate activity against a strain of methicillin-resistant Staphylococcus aureus (MRSA). Bioguided isolation of the extract resulted in the characterization of six α-pyrone derivatives (1–6) and one diketopiperazine (7). Of these compounds, 5,6-dihydro-4-methoxy-6-(1-oxopentyl)-2H-pyran-2-one (4) showed the greatest activity (IC50 = 11.4 ± 0.7 μg/mL and MIC = 62.5 μg/mL) against MRSA.
Klíčová slova:
Animal sociality – Antimicrobials – Bacterial pathogens – DNA extraction – Fungal pathogens – Fungi – Larvae – Methicillin-resistant Staphylococcus aureus
Zdroje
1. Wang YS, Shelomi M. Review of Black Soldier Fly (Hermetia illucens) as animal feed and human food. Foods. 2017; 6(10):91. doi: 10.3390/foods6100091
2. Müller A, Wolf D, Gutzeit HO. The black soldier fly, Hermetia illucens–a promising source for sustainable production of proteins, lipids and bioactive substances. Z Naturforsch C. 2017; 72(9–10): 351–363. doi: 10.1515/znc-2017-0030 28742526
3. Jeon H, Park S, Choi J, Jeong G, Lee SB, Choi Y, et al. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr Microbiol. 2011; 62(5): 1390–9. doi: 10.1007/s00284-011-9874-8 21267722
4. Bruno D, Bonelli M, De Filippis F, Di Lelio I, Tettamanti G, Casartelli M, et al. The intestinal microbiota of Hermetia illucens larvae is affected by diet and shows a diverse composition in the different midgut regions. Appl Environ Microbiol. 2019; 85(2):e01864–18. doi: 10.1128/AEM.01864-18 30504212
5. Choi WH, Yun JH, Chu JP, Chu KB. Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomol Res. 2012; 42(5): 219–226. doi: 10.1111/j.1748-5967.2012.00465.x
6. Varotto Boccazzi I, Ottoboni M, Martin E, Comandatore F, Vallone L, Spranghers T, et al. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS ONE. 2017; 12(8): e0182533. doi: 10.1371/journal.pone.0182533 28771577
7. Park SI, Kim JW, Yoe SM. Purification and characterization of a novel antibacterial peptide from black soldier fly (Hermetia illucens) larvae. Dev Comp Immunol. 2015; 52(1): 98–106. doi: 10.1016/j.dci.2015.04.018 25956195
8. Elhag O, Zhou D, Song Q, Soomro AA, Cai M, Zheng L, et al. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PloS ONE. 2017; 12(1): e0169582. doi: 10.1371/journal.pone.0169582 28056070
9. Won HC, Jiang M. Evaluation of antibacterial activity of hexanedioic acid isolated from Hermetia illucens larvae. J Appl Biomed. 2014; 12(3): 179–89. doi: 10.1016/j.jab.2014.01.003
10. Pereira E, Santos A, Reis F, Tavares RM, Baptista P, Lino-Neto T, et al. A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol Res. 2013; 168(1): 1–5. doi: 10.1016/j.micres.2012.06.008 23041377
11. Jesionek W, Móricz A, Ott P, Kocsis B, Horváth G, Choma IM. TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the Asteraceae family. J AOAC Int. 2015; 98(4): 857–861. doi: 10.5740/jaoacint.SGE2-Choma 26268962
12. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2): 163–175. doi: 10.1038/nprot.2007.521 18274517
13. Zgoda JR, Porter JR. A Convenient Microdilution method for screening natural products against bacteria and fungi. Pharm Biol. 2001; 39(3): 221–225. doi: 10.1076/phbi.39.3.221.5934
14. Chabasse D, Guiguen C, Couatarmanac’h A, Launay H, Reecht V, De Bièvre C. Contribution à la connaissance de la flore fongique kératinophile isolée des petits mammifères sauvages et du lapin de garenne en France-Discussion sur les espèces fongiques rencontrées. Ann Parasit Hum Comp. 1987; 62(4): 357–368. doi: 10.1051/parasite/1987624357
15. Metin B, Heitman J. Sexual reproduction in dermatophytes. Mycopathologia. 2017; 182(1–2): 45–55. doi: 10.1007/s11046-016-0072-x 27696123
16. Allimuthu V. Implication of fungal growth in poultry management and biogas production. PhD Thesis, Periyar University, 2015. Available from: http://hdl.handle.net/10603/151954.
17. Moubasher AH, Abdel-Sater MA, Soliman Z. Yeasts and filamentous fungi inhabiting guts of three insect species in Assiut, Egypt. Mycosphere. 2017; 8(9): 1297–316. doi: 10.5943/mycosphere/8/9/4
18. Beaver R. Insect-fungus relationships in the bark and ambrosia beetles. In: Wilding N, Collins NM, Hammond PM, Webber JF, editors. Insect-fungus interactions. 14th Symposium of the Royal Entomological Society of London in collaboration with the British Mycological Society; 1987 Sept 16–17; London; England. London: Academic Press; 1989. p.121-43. doi: 10.1016/B978-0-12-751800-8.50011–2
19. Stone W, Nebeker T, Monroe W. Ultrastructure of the mesonotal mycangium of Xylosandrus mutilatus (Blandford), an exotic ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) by light, scanning, and transmission electron microscopy. Microsc Microanal. 2005; 11(S02): 172–173. doi: 10.1017/S143192760550015
20. Rao KB, Reddy GCS. A new reaction of patulin. J Nat Prod. 1989; 52(6): 1376–1378. doi: 10.1021/np50066a039
21. Evidente A, Zonno MC, Andolfi A, Troise C, Cimmino A, Vurro M. Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. J Antibiot. 2012; 65: 203–206. doi: 10.1038/ja.2011.134 22293915
22. Strunz GM, Heissne CJ, Kakushima M, Stillwell MA. Metabolites of an unidentified Fungus: a new 5,6-dihydro-2-pyrone related to pestalotin. Can J Chem. 1974; 52(5): 825–826. doi: 10.1139/v74-128
23. Yang XL, Huang L, Li HY., Yang DF, Li ZZ. Two new compounds from the plant endophytic fungus Pestalotiopsis versicolor. J Asian Nat Prod Res. 2014; 17(4): 333–7. doi: 10.1080/10286020.2014.961918 25290251
24. Ellestad GA, McGahren WJ, Kunstmann MP. Structure of a new fungal lactone, LL-P880.alpha., from an unidentified Penicillium species. J Org Chem. 1972; 37(12): 2045–2047. doi: 10.1021/jo00977a044 5037459
25. Kimura Y, Susuki A, Tamura S. 13C-NMR Spectra of pestalotin and its analogues. Agr. Biol. Chem. 1980; 44(2): 451–452. doi: 10.1080/00021369.1980.10863966
26. Sansinenea E, Salazar F, Jiménez J, Mendoza A, Ortiz A. Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Lett. 2016; 57(24): 2604–2607. doi: 10.1016/j.tetlet.2016.04.117
27. Hayakawa Y, Adachi H, Kim JW, Shin-ya K, Seto H. Adenopeptin, a new apoptosis inducer in transformed cells from Chrysosporium sp. Tetrahedron. 1998; 54(52): 15871–15878. doi: 10.1016/S0040-4020(98)00996-X
28. Yamashita M, Kawai Y, Uchida I, Komori T, Kohsaka M, Imanaka H, et al. Chryscandin, a novel peptidyl nucleoside antibiotic. II. Structure determination and synthesis. J Antibiot. 1984; 37(11): 1284–1293. doi: 10.7164/antibiotics.37.1284 6549001
29. Hoshino Y, Ivanova VB, Yazawa K, Ando A, Mikami Y, Zaki SM, et al. Queenslandon, a new antifungal compound produced by Chrysosporium queenslandicum: production, isolation and structure elucidation. J Antibiot. 2002; 55(5): 516–519. doi: 10.7164/antibiotics.55.516 12139022
30. Fredenhagen A, Petersen F, Tintelnot-Blomley M, Rösel J, Mett H, Hug P. Semicochliodinol A and B: inhibitors of HIV-1 protease and EGF-R protein tyrosine kinase related to asterriquinones produced by the fungus Chrysosporium merdarium. J Antibiot. 1997; 50(5): 395–401. doi: 10.7164/antibiotics.50.395 9207909
31. Ivanova VB, Hoshino Y, Yazawa K, Ando A, Mikami Y, Zaki SM, et al. Isolation and structure elucidation of two new antibacterial compounds produced by Chrysosporium queenslandicum. J Antibiot. 2002; 55(10): 914–918. doi: 10.7164/antibiotics.55.914 12523825
32. Slater GP, Haskins RH, Hogge LR. Metabolites from a Chrysosporium species. Can J Microbiol. 1971; 17(12): 1576–1579. doi: 10.1139/m71-252 5168359
33. Jeon JE, Julianti E, Oh H, Park W, Oh DC, Oh KB, et al. Stereochemistry of hydroxy-bearing benzolactones: isolation and structural determination of chrysoarticulins A–C from a marine-derived fungus Chrysosporium articulatum. Tetrahedron Lett. 2013; 54(24): 3111–3115. doi: 10.1016/j.tetlet.2013.04.006
34. Ogawa H, Hasumi K, Sakai K, Murakawa S, Endo A. Pannorin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor produced by Chrysosporium pannorum. J Antibiot. 1991; 44(7): 762–767. doi: 10.7164/antibiotics.44.762 1880066
35. Tsipouras A, Goetz MA, Hensens OD, Liesch JM, Ostlind DA, Williamson JM, et al. Sporandol: a novel antiparasitic binaphthalene from Chrysosporium meridarium. Bioorg Med Chem Lett. 1997; 7(10): 1279–1282. doi: 10.1016/S0960-894X(97)00226-6
36. Hirano N, Kohno J, Tsunoda S, Nishio M, Kishi N, Okuda T, et al. TMC-69, a new Antitumor antibiotic with Cdc25A inhibitory activity, produced by Chrysosporium sp. TCI068. J Antibiot. 2001; 54(5): 421–427. doi: 10.7164/antibiotics.54.421 11480885
37. Sekhar Rao KC, Divaka S, Karanth NG, Sattur AP. 14-(2′,3′,5′-trihydroxyphenyl)tetradecan-2-ol, a novel acetylcholinesterase inhibitor from Chrysosporium sp. J Antibiot. 2001; 54(10): 848–849. doi: 10.7164/antibiotics.54.848 11776443
38. Tanaka Y, Matsuzaki K, Zhong CL, Yoshida H, Kawakubo T, Masuma R, et al. Dechlorogeodin and its new dihydro derivatives, fungal metabolites with herbicidal activity. J Antibiot. 1996; 49(10): 1056–9. doi: 10.7164/antibiotics.49.1056 8968402
39. Van der Pyl D, Cans P, Debernard JJ, Herman F, Lelievre Y, Tahraoui L, et al. RPR113228, a novel farnesyl protein transferase inhibitor produced by Chrysosporium lobatum. J Antibiot. 1995; 48(7): 736–737. doi: 10.7164/antibiotics.48.736 7649878
40. Yang SW, Buevich A, Chan TM, Terracciano J, Chen G, Loebenberg D, et al. A new antifungal sterol sulfate, Sch 601324, from Chrysosporium sp. J Antibiot. 2003; 56(4): 419–22. doi: 10.7164/antibiotics.56.419 12817816
41. Yang SW, Chan TM, Terracciano J, Boehm E, Patel R, Chen G, et al. Caryophyllenes from a fungal culture of Chrysosporium pilosum. J Nat Prod. 2009; 72(3): 484–487. doi: 10.1021/np8006414 19183048
42. Chen YS. Studies on the metabolic products of Rosellinia necatrix. I. Isolation and characterization of several physiologically active neutral substances. Bull Agr Chem Soc Japan. 1960; 24(4): 372–381. doi: 10.1080/03758397.1960.10857680
43. Takeda Y, Fujita T, Shingu T, Ogimi C. Studies on the bacterial gall of Myrica rubra: isolation of a new [7.0]-Metacyclophan from the galland dl-β-phenyllactic acid from the culture of gall-forming bacteria. Chem Pharm Bull. 1987; 35: 2569–2573. doi: 10.1248/cpb.35.2569
44. Fairlamb IJ, Marrison LR, Dickinson JM, Lu FJ, Schmidt JP. 2-pyrones possessing antimicrobial and cytotoxic activities. Bioorg Med Chem. 2004; 12(15): 4285–4299. doi: 10.1016/j.bmc.2004.01.051 15246105
45. Bhat ZS, Rather MA, Maqbool M, Lah HU, Yousuf SK, Ahmad Z. α-pyrones: Small molecules with versatile structural diversity reflected in multiple pharmacological activities-an update. Biomed Pharmacother. 2017; 91: 265–277. doi: 10.1016/j.biopha.2017.04.012 28460229
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jaké nové možnosti léčby deprese jsou nyní v centru pozornosti?
- Komáří očkování, zrzaví kocouři, temný proteom a hovínkový koktejl – „jednohubky“ z výzkumu 2024/46
- Nemoc zkamenělých lidí – léčba na obzoru?
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy