Linking surveillance and clinical data for evaluating trends in bloodstream infection rates in neonatal units in England
Autoři:
Caroline Fraser aff001; Berit Muller-Pebody aff002; Ruth Blackburn aff003; Jim Gray aff004; Sam J. Oddie aff005; Ruth E. Gilbert aff001; Katie Harron aff001
Působiště autorů:
UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
aff001; National Infection Service, Public Health England, London, United Kingdom
aff002; Institute of Health Informatics, University College London, London, United Kingdom
aff003; Microbiology, Birmingham Women’s & Children’s Hospitals, Birmingham, United Kingdom
aff004; Bradford Neonatology, Bradford Royal Infirmary, Bradford, United Kingdom
aff005; Centre for Reviews and Dissemination, University of York, York, United Kingdom
aff006
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226040
Souhrn
Objective
To evaluate variation in trends in bloodstream infection (BSI) rates in neonatal units (NNUs) in England according to the data sources and linkage methods used.
Methods
We used deterministic and probabilistic methods to link clinical records from 112 NNUs in the National Neonatal Research Database (NNRD) to national laboratory infection surveillance data from Public Health England. We calculated the proportion of babies in NNRD (aged <1 year and admitted between 2010–2017) with a BSI caused by clearly pathogenic organisms between two days after admission and two days after discharge. We used Poisson regression to determine trends in the proportion of babies with BSI based on i) deterministic and probabilistic linkage of NNRD and surveillance data (primary measure), ii) deterministic linkage of NNRD-surveillance data, iii) NNRD records alone, and iv) linked NNRD-surveillance data augmented with clinical records of laboratory-confirmed BSI in NNRD.
Results
Using deterministic and probabilistic linkage, 5,629 of 349,740 babies admitted to a NNU in NNRD linked with 6,660 BSI episodes accounting for 38% of 17,388 BSI records aged <1 year in surveillance data. The proportion of babies with BSI due to clearly pathogenic organisms during their NNU admission was 1.0% using deterministic plus probabilistic linkage (primary measure), compared to 1.0% using deterministic linkage alone, 0.6% using NNRD records alone, and 1.2% using linkage augmented with clinical records of BSI in NNRD. Equivalent proportions for babies born before 32 weeks of gestation were 5.0%, 4.8%, 2.9% and 5.9%. The proportion of babies who linked to a BSI decreased by 7.5% each year (95% confidence interval [CI]: -14.3%, -0.1%) using deterministic and probabilistic linkage but was stable using clinical records of BSI or deterministic linkage alone.
Conclusion
Linkage that combines BSI records from national laboratory surveillance and clinical NNU data sources, and use of probabilistic methods, substantially improved ascertainment of BSI and estimates of BSI trends over time, compared with single data sources.
Klíčová slova:
Blood – Clinical laboratories – England – Government laboratories – Chi square tests – Infectious disease surveillance – Neonatal care – Neonates
Zdroje
1. Rosenthal VD, Bijie H, Maki DG, Mehta Y, Apisarnthanarak A, Medeiros EA, et al. International Nosocomial Infection Control Consortium (INICC) report, data summary of 36 countries, for 2004–2009. American journal of infection control. 2012;40(5):396–407. doi: 10.1016/j.ajic.2011.05.020 21908073.
2. Wilson J, Elgohari S, Livermore DM, Cookson B, Johnson A, Lamagni T, et al. Trends among pathogens reported as causing bacteraemia in England, 2004–2008. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2011;17(3):451–8. doi: 10.1111/j.1469-0691.2010.03262.x 20491834.
3. Fraser C, Harron K, Dalton L, Gilbert R, Oddie SJ. Variation in infection prevention practices for peripherally inserted central venous catheters: A survey of neonatal units in England and Wales. PloS one. 2018;13(11):e0204894. Epub 2018/11/02. doi: 10.1371/journal.pone.0204894 30383769.
4. Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma E, et al. Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. The Lancet Infectious diseases. 2016;16(6):724–34. Epub 2016/02/26. doi: 10.1016/S1473-3099(15)00409-0 26907734.
5. Helder O, van den Hoogen A, de Boer C, van Goudoever J, Verboon-Maciolek M, Kornelisse R. Effectiveness of non-pharmacological interventions for the prevention of bloodstream infections in infants admitted to a neonatal intensive care unit: A systematic review. Int J Nurs Stud. 2013;50(6):819–31. Epub 2012/03/06. doi: 10.1016/j.ijnurstu.2012.02.009 22385913.
6. Payne V, Hall M, Prieto J, Johnson M. Care bundles to reduce central line-associated bloodstream infections in the neonatal unit: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017. Epub 2017/11/28. doi: 10.1136/archdischild-2017-313362 29175985.
7. Holmes A, Dore CJ, Saraswatula A, Bamford KB, Richards MS, Coello R, et al. Risk factors and recommendations for rate stratification for surveillance of neonatal healthcare-associated bloodstream infection. The Journal of hospital infection. 2008;68(1):66–72. doi: 10.1016/j.jhin.2007.08.019 17942191.
8. Couto RC, Pedrosa TM, Tofani Cde P, Pedroso ER. Risk factors for nosocomial infection in a neonatal intensive care unit. Infection control and hospital epidemiology. 2006;27(6):571–5. doi: 10.1086/504931 16755475.
9. Gale C, Morris I, Neonatal Data Analysis Unit Steering B. The UK National Neonatal Research Database: using neonatal data for research, quality improvement and more. Arch Dis Child Educ Pract Ed. 2016;101(4):216–8. Epub 2016/03/13. doi: 10.1136/archdischild-2015-309928 26968617.
10. NHS England. Service Specifications: Neonatal Critical Care (Intensive Care, HDU and Special Care) 2015.
11. Ismail AQT, Palmer K. Assessing the accuracy of the National Neonatal Audit Programme calculated central line-associated bloodstream infection rate from local data. Archives of disease in childhood Fetal and neonatal edition. 2017. doi: 10.1136/archdischild-2017-313291 28676562.
12. The National Neonatal Audit Programme. National Neonatal Audit Programme 2018 report on 2017 data. 2018.
13. PHE. Laboratory reporting to Public Health England: A guide for diagnostic laboratories. 2016.
14. Sayers A, Ben-Shlomo Y, Blom AW, Steele F. Probabilistic record linkage. International journal of epidemiology. 2015. doi: 10.1093/ije/dyv322 26686842.
15. Harron K, Dibben C, Boyd J, Hjern A, Azimaee M, Barreto ML, et al. Challenges in administrative data linkage for research. Big Data Soc. 2017;4(2):2053951717745678. Epub 2018/11/02. doi: 10.1177/2053951717745678 30381794.
16. Fellegi IP, Sunter AB. A Theory for Record Linkage. Journal of the American Statistical Association. 1969;64(328):1183–210. doi: 10.1080/01621459.1969.10501049
17. Cailes B, Kortsalioudaki C, Buttery J, Pattnayak S, Greenough A, Matthes J, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Archives of disease in childhood Fetal and neonatal edition. 2018;103(6):F547–F53. Epub 2017/12/07. doi: 10.1136/archdischild-2017-313203 29208666.
18. Lim FJ, Blyth CC, Fathima P, de Klerk N, Moore HC. Record linkage study of the pathogen-specific burden of respiratory viruses in children. Influenza and other respiratory viruses. 2017;11(6):502–10. Epub 2017/10/11. doi: 10.1111/irv.12508 28991397.
19. Moore HC, de Klerk N, Keil AD, Smith DW, Blyth CC, Richmond P, et al. Use of data linkage to investigate the aetiology of acute lower respiratory infection hospitalisations in children. Journal of paediatrics and child health. 2012;48(6):520–8. Epub 2011/11/15. doi: 10.1111/j.1440-1754.2011.02229.x 22077532.
20. Harron K, Mok Q, Dwan K, Ridyard CH, Moitt T, Millar M, et al. CATheter Infections in CHildren (CATCH): a randomised controlled trial and economic evaluation comparing impregnated and standard central venous catheters in children. Health technology assessment. 2016;20(18):vii–xxviii, 1–219. doi: 10.3310/hta20180 26935961.
21. NHS Digital. Hospital Episode Statistics (HES) 2019 [cited 2019 02/09/2019]. https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/hospital-episode-statistics#top.
22. Bion J, Richardson A, Hibbert P, Beer J, Abrusci T, McCutcheon M, et al. 'Matching Michigan': a 2-year stepped interventional programme to minimise central venous catheter-blood stream infections in intensive care units in England. BMJ Qual Saf. 2013;22(2):110–23. Epub 2012/09/22. doi: 10.1136/bmjqs-2012-001325 22996571.
23. Montgomery-Taylor S, Emery F, Anthony M. Eighteen months of "matching Michigan" at a UK neonatal intensive care unit. The Pediatric infectious disease journal. 2013;32(5):565–7. Epub 2013/01/24. doi: 10.1097/INF.0b013e3182868389 23340554.
24. NHS. Saving Lives: reducing infection, delivering clean and safe care. 2007.
25. Sinha AK, Murthy V, Nath P, Morris JK, Millar M. Prevention of Late Onset Sepsis and Central-line Associated Blood Stream Infection in Preterm Infants. The Pediatric infectious disease journal. 2016;35(4):401–6. Epub 2015/12/03. doi: 10.1097/INF.0000000000001019 26629870.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy