Processed and ultra-processed foods are associated with high prevalence of inadequate selenium intake and low prevalence of vitamin B1 and zinc inadequacy in adolescents from public schools in an urban area of northeastern Brazil
Autoři:
Raphaela Cecília Thé Maia de Arruda Falcão aff001; Clélia de Oliveira Lyra aff001; Célia Márcia Medeiros de Morais aff002; Liana Galvão Bacurau Pinheiro aff002; Lucia Fátima Campos Pedrosa aff001; Severina Carla Vieira Cunha Lima aff001; Karine Cavalcanti Maurício Sena-Evangelista aff001
Působiště autorů:
Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
aff001; Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0224984
Souhrn
Changes in eating behavior of adolescents are associated with high consumption of processed and ultra-processed foods. This study evaluated the association between these foods and the prevalence of inadequate micronutrient intake in adolescents. A cross-sectional study was conducted with 444 adolescents from public schools in the city of Natal, northeastern Brazil. The adolescents’ habitual food consumption was evaluated using two 24-hour dietary recalls. Foods were categorized according to the degree of processing (processed and ultra-processed) and distributed into energy quartiles, using the NOVA classification system. Inadequacies in micronutrient intake were assessed using the estimated average requirement (EAR) as the cutoff point. Multivariate logistic regression models were used to estimate the relationship between energy percentage from processed and ultra-processed foods and prevalence of inadequate micronutrient intake. The mean (Standard Deviation (SD)) consumption of total energy from processed foods ranged from 5.8% (1.7%) in Q1 to 20.6% (2.9%) in Q4, while the mean consumption of total energy from ultra-processed foods ranged from 21.4% (4.9%) in Q1 to 61.5% (11.7%) in Q4. The rates of inadequate intake of vitamin D, vitamin E, folate, calcium, and selenium were above 80% for both sexes across all age groups. Energy consumption from processed foods was associated with higher prevalence of inadequate selenium intake (p < 0.01) and lower prevalence of inadequate vitamin B1 intake (p = 0.04). Energy consumption from ultra-processed foods was associated with lower prevalence of inadequate zinc and vitamin B1 intake (p < 0.01 and p = 0.03, respectively). An increase in the proportion of energy obtained from processed and ultra-processed foods may reflect higher prevalence of inadequate selenium intake and lower prevalence of vitamin B1 and zinc inadequacy.
Klíčová slova:
Adolescents – Brazil – Food – Food consumption – Selenium – Schools – Thiamine
Zdroje
1. World Health Organization. Child and adolescent health and development: progress report 2009: highlights. Switzerland: WHO; 2010. http://apps.who.int/iris/bitstream/10665/44314/1/9789241599368_eng.pdf
2. Hobbs M, Pearson N, Foster PJ, Biddle SJ. Sedentary behaviour and diet across the lifespan: an updated systematic review. Br. J. Sports Med. 2015; 49(18):1179–1188. doi: 10.1136/bjsports-2014-093754 25351783
3. Costa CDS, Flores TR, Wendt A, Neves RG, Assunção MCF, Santos IS. Sedentary behavior and consumption of ultra-processed foods by Brazilian adolescents: Brazilian National School Health Survey (PeNSE), 2015. Cad Saude Publica. 2018; 34(3):e00021017. 29538514
4. Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018; 21(1):5–17. doi: 10.1017/S1368980017000234 28322183
5. D´Avila HF, Kirsten VR. Energy intake from ultra-processed foods among adolescents. Rev Paul Pediatr. 2017;35(1):54–60. 28977317
6. Bielemann RM, Motta JVS, Minten GC, Horta BL, Gigante DP. Consumption of ultra-processed foods and their impact on the diet of young adults. Rev Saude Publica. 2015; 49:28. doi: 10.1590/S0034-8910.2015049005572 26018785
7. Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015; 385(9986):2510–2520. doi: 10.1016/S0140-6736(14)61746-3 25703114
8. Diethelm K, Jankovic N, Moreno LA, et al. Food intake of European adolescents in the light of different food-based dietary guidelines: results of the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2012;15(3):386–398. doi: 10.1017/S1368980011001935 21936969
9. Martinez Steele E, Baraldi LG, Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6(3):e009892. doi: 10.1136/bmjopen-2015-009892 26962035
10. Martínez Steele E, Popkin BM, Swinburn B, Monteiro CA. The share of ultra-processed foods and the overall nutritional quality of diets in the US: evidence from a nationally representative cross-sectional study. Popul Health Metr. 2017;15(1):6. doi: 10.1186/s12963-017-0119-3 28193285
11. Mathias KC, Jacquier E, Eldridge AL. Missing lunch is associated with lower intakes of micronutrients from foods and beverages among children and adolescents in the United States. J Acad Nutr Diet. 2016; 116(4):667–676.e6. doi: 10.1016/j.jand.2015.12.021 26899193
12. Mohammadi S, Jalaludin MY, Su TT, Dahlui M, Azmi Mohamed MN, Abdul Majid H. Determinants of Diet and Physical Activity in Malaysian Adolescents: A Systematic Review. Int J Environ Res Public Health. 2019 Feb 19;16(4). doi: 10.3390/ijerph16040603 30791423
13. Henry BW. The importance of the where as well as what and how much in food patterns of adolescents. J Am Diet Assoc. 2006; 106(3):373–375. doi: 10.1016/j.jada.2006.01.017 16503226
14. Popkim BM, Reardom T. Obesity and the food system transformation in Latin America. Obes Rev. 2018;19(8):1028–1064. doi: 10.1111/obr.12694 29691969
15. Cornwell B, Villamor E, Mora-Plazas M, Marin C, Monteiro CA, Baylin A. Processed and ultra-processed foods are associated with lower-quality nutrient profiles in children from Colombia. Public Health Nutr. 2018;21:142–147. doi: 10.1017/S1368980017000891 28554335
16. Martins APB, Levy RB, Claro RM, Moubarac JC, Monteiro CA. Increased contribution of ultra-processed food products in the Brazilian diet (1987–2009). Rev Saude Publica. 2013; 47(4):656–665. doi: 10.1590/S0034-8910.2013047004968 24346675
17. Monteiro CA, Levy RB, Claro RM, Castro IR, Cannon G. Increasing consumption of ultra-processed foods and likely impact on human health: evidence from Brazil. Public Health Nutr. 2011;14:5–13. doi: 10.1017/S1368980010003241 21211100
18. Souza AM, Barufaldi LA, Abreu GA, et al. ERICA: intake of macro and micronutrients of Brazilian adolescents. Rev Saude Publica. 2016;50(suppl 1):5s. doi: 10.1590/S01518-8787.2016050006698 26910551
19. Brazil. Brazilian Institute of Geography and Statistics. National School Health Survey—PeNSE 2015. Rio de Janeiro: IBGE; 2016. p. 132.
20. Maia EG, Silva LESD, Santos MAS, Barufaldi LA, Silva SUD, Claro RM. Dietary patterns, sociodemographic and behavioral characteristics among Brazilian adolescents. Rev Bras Epidemiol. 2018 Nov 29;21(suppl 1):e180009. 30517460
21. Lima SCVC, Lyra CO, Pinheiro LGB, Azevedo PRM, Arrais RF, Pedrosa LFC. Association between dyslipidemia and anthropometric indicators in adolescents. Nutr Hosp. 2011;26(2):304–310. 21666967
22. Morais CMM, Pinheiro LGB, Lima SCVC, et al. Dietary patterns of young adolescents in urban areas of Northeast Brazil. Nutr Hosp. 2013;28(6):1977–1984. 24506377
23. Lyra CO, Lima SCVC, Lima KC, Arrais RF, Pedrosa LF. Prediction equations for fat and fat-free body mass in adolescents, based on body circumferences. Ann Hum Biol. 2012; 39(4):275–280. doi: 10.3109/03014460.2012.685106 22594692
24. Willett WC. Nutritional epidemiology. 2nd ed. New York: Oxford University; 1998.
25. World Health Organization–WHO. Growth reference data for 5–19 years. 2007. http://www.who.int/growthref/who2007_bmi_for_age/en/
26. Habicht JP. Standardization of quantitative epidemiological methods in the field. Bol Oficina Sanit Panam. 1974;76(5):375–384. 4277063
27. Marshall WA, Tanner JM. Variation in the pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291–303. doi: 10.1136/adc.44.235.291 5785179
28. Marshall WA, Tanner JM. Variation in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):13–23. doi: 10.1136/adc.45.239.13 5440182
29. Thompson FE, Byers T. Dietary Assessment Resource Manual. J Nutr. 1994;124(11 Suppl):2245S–2317S. 7965210
30. Brazilian Institute of Geography and Statistics. Search of family budgets 2008–2009: table of measures for food Brazil. Rio de Janeiro; 2011.
31. Philippi ST. Virtual Nutri Plus [software]. Departamento d Nutrição da Faculdade de Saúde Pública da Universidade de São Paulo: São Paulo, Brasil, 2007.
32. The Brazilian food composition table/NEPA—UNICAMP. 4th ed. rev. e ampl. Campinas: NEPA-UNICAMP; 2011. p. 161.
33. USDA. National Nutrient Database for Standard Reference, Release 21. [acesso em 2008 set]. http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=230658
34. Harttig U, Haubrock J, Knuppel S, Boeing H. The MSM program: web-based statistics package for estimating usual dietary intake using the multiple source method. Eur J Clin Nutr. 2011;65(Suppl 1):S87e91. doi: 10.1038/ejcn.2011.92 21731011
35. Haubrock J, Nothlings U, Volatier JL, Dekkers A, Ocké M, Harting U, et al. Estimating usual food intake distributions by using the Multiple Source Method in EPIC-Potsdam Calibration Study. J Nutr. 2011;141(5):914–920. doi: 10.3945/jn.109.120394 21430241
36. Monteiro CA, Cannon G, Levy RB, Claro RM, Moubarac J-C. The Food System. Processing. The big issue for disease, good health, well-being. World Nutrition. 2012; 3(12):527–569.
37. Louzada MLC, Martins APB, Canella DS, et al. Ultra-processed foods and nutritional dietary profile in Brazil. Rev Saude Publica. 2015;49:38. doi: 10.1590/S0034-8910.2015049006132 26176747
38. Institute of Medicine, Food and Nutrition Board. Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary reference intakes: applications in dietary assessment. Washington, DC: National Academy Press, 2000, p. 287.
39. Institute of Medicine. DRI’s. Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. Washington, DC. National Academy Press, 2002, p. 773.
40. Institute of Medicine, Food and Nutrition Board (US). Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, Sulfate. Washington (DC): National Academy Press; 2004, p. 617.
41. Simões BS, Barreto SM, Molina MCB, Luft VC, Duncan BB, Schmidt MI, et al. Consumption of ultra-processed foods and socioeconomic position: a cross-sectional analysis of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cad Saude Publica. 2018;34(3):e00019717. doi: 10.1590/0102-311X00019717 29513858
42. Araujo MC, Cunha DB, Bezerra IN, Castro MBT, Sichieri R. Quality of food choices of Brazilian adolescents according to individual earnings. Public Health Nutr. 2017;20(17):3145–3150. doi: 10.1017/S1368980017002099 28851473
43. Arruda SP, da Silva AA, Kac G et al. Socioeconomic and demographic factors are associated with dietary patterns in a cohort of young Brazilian adults. BMC Public Health. 2014; 26;14:654. doi: 10.1186/1471-2458-14-654 24969831
44. Mourabac JC, Batal M, Louzada ML, Steele EM, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite. 2017;108:512–520. doi: 10.1016/j.appet.2016.11.006 27825941
45. Society for Adolescent Health and Medicine. Recommended vitamin D intake and management of low vitamin D status in adolescents: a position statement of the society for adolescent health and medicine. J Adolesc Health. 2013;52(6):801–803. doi: 10.1016/j.jadohealth.2013.03.022 23701889
46. Veiga GV, Costa RS, Araújo MC, et al. Inadequate nutrient intake in Brazilian adolescents. Rev Saude Publica. 2013;47(1 Suppl):212S–221S. http://dx.doi.org/10.1590/S0034-89102013000700007
47. Martini LA, Verly E Jr, Marchioni DM, Fisberg RM. Prevalence and correlates of calcium and vitamin D status adequacy in adolescents, adults, and elderly from the Health Survey-São Paulo. Nutrition. 2013;29(6):845–850. doi: 10.1016/j.nut.2012.12.009 23422543
48. Sánchez-Pimienta TG, López-Olmedo N, Rodríguez-Ramírez S, et al. High prevalence of inadequate calcium and iron intakes by Mexican population groups as assessed by 24-hour recalls. J Nutr. 2016;146(9):1874S–1880S. doi: 10.3945/jn.115.227074 27511935
49. Akseer N, Al-Gashm S, Mehta S, Mokdad A, Bhutta ZA. Global and regional trends in the nutritional status of young people: a critical and neglected age group. Ann N Y Acad Sci. 2017;1393(1):3–20. doi: 10.1111/nyas.13336 28436100
50. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015; 97:55–74. doi: 10.1016/j.ejmech.2015.04.040 25942353
51. Crider KS, Bailey LB, Berry RJ. Folic acid food fortification: its history, effect, concerns and future directions. Nutrients. 2011;3(3):370–384. doi: 10.3390/nu3030370 22254102
52. Fiorentino M, Landais E, Bastard G, Carriquiry A, Wieringa FT, Berger J. Nutrient intake is insufficient among Senegalese urban school children and adolescents: results from two 24 h recalls in state primary school in Dakar. Nutrients. 2016;8(10):650. doi: 10.3390/nu8100650 27775598
53. Mesías M, Seiquer I, Navarro MP. Iron nutrition in adolescence. Crit Rev Food Sci Nutr. 2013;53(11):1226–1237. doi: 10.1080/10408398.2011.564333 24007425
54. Rocha NP, Milagres LC, Novaes JF, Franceschini SCC. Association between food and nutrition insecurity with cardiometabolic risk factors in childhood and adolescence: a systematic review. Rev Paul Pediatr. 2016;34(2):225–233. doi: 10.1016/j.rpped.2015.08.007 26564327
55. Oh SW, Han SY, Koo HS, Kim S, Chin HJ. Association of sodium excretion with metabolic syndrome, insulin resistance, and body fat. Medicine (Baltimore). 2015;94(39):1–7. doi: 10.1097/MD.0000000000001650 26426658
56. Louzada MLC, Martins APB, Canella DS, et al. Impact of ultra-processed foods on micronutrient content in the Brazilian diet. Rev Saude Publica. 2015;49:5.
57. Kieliszek M, Blazejak S. Currente Knowledge on the importance of selenium in food for living organisms: a review. Molecules. 2016; 21(5): doi: 10.3390/molecules21050609 27171069
58. Gashu D, Marquis GS, Bougma K, Stoecker BJ. Selenium inadequacy hampers thyroid response of young children after iodine repletion. J Trace Elem Med Biol. 2018; 50: 291–295. doi: 10.1016/j.jtemb.2018.07.021 30262294
59. Shewry PR, Hey SJ. The contribution of wheat to human diet and health. Food Energy Secur. 2015;4(3):178–202. doi: 10.1002/fes3.64 27610232
60. Liberato SC, Pinheiro Sant’Ana HM. Fortification of industrialized foods with vitamins. Rev Nutr. 2006; 19(2): 215–231. http://dx.doi.org/10.1590/S1415-52732006000200009
61. Sangalli CN, Rauber F, Vitolo MR. Low prevalence of inadequate micronutrient intake in young children in the south of Brazil: a new perspective. BR J Nutr. 2016; 116(5): 890–6. doi: 10.1017/S0007114516002695 27452407
62. Tecer CM, Dwyer J, Fulgoni VL, Rei JC, Leveille GA, MacDonald RS, et al. Processed foods: contributions to nutrition. Am J Clin Nutr. 2014; 99(6): 1525–42. doi: 10.3945/ajcn.114.089284 24760975
63. Bruins JM, Mugambi G, Verkaik-Kloosterman J, Hoekstra J, Kraemer K, Osendarp S, et al. Addressing the risk of inadequate and excessive micronutrients intakes: traditional versus new approaches to setting adequate and safe micronutrient levels in foods. Food Nutr Res. 2015; 59. doi: 10.3402/fnr.v59.26020 25630617
64. Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content? Curr Obs Rep. 2017; 6(4): 420–431. doi: 10.1007/s13679-017-0285-4 29071481
65. Benjamin-Neelon SE. Position of the Academy of Nutrition and Dietetics: Benchmarks for Nutrition in Child Care. J Acad Nutr Diet. 2018;118(7):1291–1300. doi: 10.1016/j.jand.2018.05.001 29937055
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy