Study of congenital Morgagnian cataracts in Holstein calves
Autoři:
Marina Braun aff001; Ann-Kathrin Struck aff001; Sina Reinartz aff001; Maike Heppelmann aff002; Jürgen Rehage aff002; Johanna Corinna Eule aff003; Malgorzata Ciurkiewicz aff004; Andreas Beineke aff004; Julia Metzger aff001; Ottmar Distl aff001
Působiště autorů:
Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
aff001; Clinic for Cattle, University of Veterinary Medicine Hannover, Hannover, Germany
aff002; Small Animal Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
aff003; Institute of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226823
Souhrn
Cataracts are focal to diffuse opacities of the eye lens causing impaired vision or complete blindness. For bilateral congenital cataracts in Red Holsteins a perfectly cosegregating mutation within the CPAMD8 gene (CPAMD8:g.5995966C>T) has been reported. We genotyped the CPAMD8:g.5995966C>T variant in Holstein calves affected by congenital bilateral congenital cataracts, their unaffected relatives and randomly selected herd mates. Ophthalmological examinations were performed in all affected individuals to confirm a congenital cataract. Whole genome sequencing was employed to screen variants in candidate genes for the Morgagnian cataract phenotype. In the present study, 3/35 cases were confirmed as homozygous mutated and 6/14 obligate carriers. Further 7/46 unaffected animals related with these cases were heterozygous mutated for the CPAMD8:g.5995966C>T variant. However 32 cases with a congenital cataract showed the wild type for the CPAMD8 variant. We did not identify variants in the candidate genes CPAMD8 and NID1 or in their close neighborhood as strongly associated with the congenital cataract phenotype in Holstein calves with the CPAMD8 wild type. In conclusion, the CPAMD8:g.5995966C>T variant is insufficient to explain the majority of Morgagnian congenital cataract phenotypes in Holsteins. It is very likely that congenital bilateral cataracts may be genetically heterogeneous and not yet known variants in genes other than CPAMD8 and NID1 are involved.
Klíčová slova:
Cataracts – Cattle – Congenital anomalies – Eye lens – Eyes – Opacity – Optical lenses – Variant genotypes
Zdroje
1. Carter AH. An inherited blindness (cataract) in cattle. Proceedings of the New Zealand Society of Animal Production. 1960; 20:108.
2. Grahn BH, Peiffer R. Veterinary ophthalmic pathology. In: Gelatt KN, editor. Veterinary ophthalmology. Ames: Wiley; 2013. p. 456–457.
3. Detlefson JA, Yapp WW. The inheritance of congenital cataract in cattle. The American Naturalist. 1920; 54(632):277–80.
4. Small CP. Hereditary cataract in calves. American Journal of Ophthalmology. 1919;2(9):681–2.
5. Ashton Barnett KC, Clay CE, Clegg FG. Congenital nuclear cataracts in cattle. The Veterinary Record. 1977; 100(24):505–8. doi: 10.1136/vr.100.24.505 878267
6. Hässig M, Jud F, Spiess B. Vermehrtes Auftreten von nukleärer Katarakt beim Kalb nach Erstellung einer Mobilfunkbasisstation. Schweizer Archiv für Tierheilkunde. 2012; 154:82–86. doi: 10.1024/0036-7281/a000300 22287140
7. Gregory P, Mead S, Regan W. A congenital hereditary eye defect of cattle. Journal of Heredity. 1943; 34(4):125–8.
8. Gelatt K. Cataracts in cattle. Journal of the American Veterinary Medical Association. 1971; 159:195–200. 5106050
9. Leipold HW, Gelatt KN, Huston K. Multiple ocular anomalies and hydrocephalus in grade beef Shorthorn cattle. American Journal of Veterinary Research. 1971; 32(7):1019–26. 5104395
10. Krump L, O’Grady L, Lorenz I, Grimes T. Congenital cataracts in an Ayrshire herd: a herd case report. Irish Veterinary Journal. 2014; 67(1):2. doi: 10.1186/2046-0481-67-2 24460638
11. Murgiano L, Jagannathan V, Calderoni V, Joechler M, Gentile A, Drögemüller C. Looking the cow in the eye: deletion in the NID1 gene is associated with recessive inherited cataract in Romagnola cattle. PLoS ONE. 2014; 9(10):e110628. doi: 10.1371/journal.pone.0110628 25347398
12. Ellis K. An investigation into a herd outbreak of congenital cataracts. Cattle Practice. 2001; 9(1):29–32.
13. Osinchuk S, Petrie L, Leis M, Schumann F, Bauer B, Sandmeyer L, et al. Congenital nuclear cataracts in a Holstein dairy herd. The Canadian Veterinary Journal. 2017; 58(5):488–92. 28507388
14. Bistner S, Rubin L, Aguirre G. Development of the bovine eye. American Journal of Veterinary Research. 1973; 34(1):7–12. 4683977
15. Hollmann AK, Dammann I, Wemheuer WM, Wemheuer WE, Chilla A, Tipold A, et al. Morgagnian cataract resulting from a naturally occurring nonsense mutation elucidates a role of CPAMD8 in mammalian lens development. PloS ONE. 2017; 12(7):e0180665. doi: 10.1371/journal.pone.0180665 28683140
16. Schmidt TA, Wrede J, Simon DL. OPTI-MATE Ver. 4.0, Management-Computer-Programm zur Minimierung der Inzucht in gefährdeten Populationen. Hannover; 2006.
17. Andrews S. A quality control tool for high throughput sequence data. In: Reference Source. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; 2010.
18. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011; 27(6):863–4. doi: 10.1093/bioinformatics/btr026 21278185
19. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 19451168
20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 19505943
21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research. 2010; 20(9):1297–303. doi: 10.1101/gr.107524.110 20644199
22. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012; 6(2):80–92.
23. Bistner S, Rubin L, Saunders L. The ocular lesions of bovine viral diarrhea-mucosal disease. Pathologia veterinaria. 1970; 7(3):275–86. doi: 10.1177/030098587000700306 5534259
24. Peterhans E, Bachofen C, Stalder H, Schweizer M. Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction. Veterinary Research. 2010; 41(6):44. doi: 10.1051/vetres/2010016 20197026
25. Williams DL. Welfare issues in farm animal ophthalmology. Veterinary Clinics of North America Food Animal Practice 2010; 26(3):427–35. doi: 10.1016/j.cvfa.2010.08.005 21056793
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy