#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Drought stress and re-watering affect the abundance of TIP aquaporin transcripts in barley


Autoři: Marzena Małgorzata Kurowska aff001;  Klaudia Wiecha aff001;  Katarzyna Gajek aff001;  Iwona Szarejko aff001
Působiště autorů: Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland aff001
Vyšlo v časopise: PLoS ONE 14(12)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226423

Souhrn

Tonoplast Intrinsic Proteins (TIP) are plant aquaporins that are primarily localized in the tonoplast and play a role in the bidirectional flux of water and other substrates across a membrane. In barley, eleven members of the HvTIP gene subfamily have been identified. Here, we describe the transcription profile of the HvTIP genes in the leaves of barley seedlings being grown under optimal moisture conditions, drought stress and a re-watering phase. The applied drought stress caused a 55% decrease in the relative water content (RWC) in seedlings, while re-watering increased the RWC to 90% of the control. Our analysis showed that all HvTIP genes, except HvTIP3;2, HvTIP4;3 and HvTIP5.1, were expressed in leaves of ten-day-old barley seedlings under optimal water conditions with the transcripts of HvTIP2;3, HvTIP1;2 and HvTIP1;1 being the most abundant. We showed, for the first time in barley, a significant variation in the transcriptional activity between the analysed genes under drought stress. After drought treatment, five HvTIP genes, which are engaged in water transport, were down-regulated to varying degrees, while two, HvTIP3;1 and HvTIP4;1, were up-regulated. The HvTIP3;1 isoform, which is postulated as transporting hydrogen peroxide, expressed the highest increase of activity (ca. 5000x) under drought stress, thus indicating its importance in the response to this stress. Re-hydration caused the return of the expression of many genes to the level that was observed under optimal moisture conditions or, at least, a change in this direction Additionally, we examined the promotor regions of HvTIP and detected the presence of the cis-regulatory elements that are connected with the hormone and stress responses in all of the genes. Overall, our results suggest that 7 of 11 studied HvTIP (HvTIP1;1, HvTIP1;2, HvTIP2;1, HvTIP2;2, HvTIP2;3, HvTIP3;1, HvTIP4;1) have an important function during the adaptation of barley to drought stress conditions. We discuss the identified drought-responsive HvTIP in terms of their function in the adaptation of barley to this stress.

Klíčová slova:

Barley – Drought adaptation – Leaves – Membrane proteins – Plant resistance to abiotic stress – Seedlings – Sequence motif analysis – Water resources


Zdroje

1. Maurel C, Chrispeels MJ. Aquaporins. A molecular entry into plant water relations. Plant Physiol. 2001; 125(1):135–138. doi: 10.1104/pp.125.1.135 11154316

2. Li C, Wang W. Molecular Biology of Aquaporins. Adv Exp Med Biol. 2017; 969:1–34. doi: 10.1007/978-94-024-1057-0_1 28258563

3. Sutka M, Amodeo G, Ozu M. Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev. 2017; 9(5):545–562. doi: 10.1007/s12551-017-0313-3 28871493

4. Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, et al. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci. 2019;20(4):368–395. doi: 10.2174/1389203720666181102095910 30387391

5. Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res. 2018; 16;51(1):4. doi: 10.1186/s40659-018-0152-0 29338771

6. Sui H, Han BG, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature. 2001; 20–27;414(6866):872–8. doi: 10.1038/414872a 11780053

7. Wu B, Steinbronn C, Alsterfjord M, Zeuthen T, Beitz E. Concerted action of two cation filters in the aquaporin water channel. EMBO J. 2009; 5;28(15):2188–2194. doi: 10.1038/emboj.2009.182 19574955

8. Guan XG, Su WH, Yi F, Zhang D, Hao F, Zhang HG, et al. NPA motifs play a key role in plasma membrane targeting of aquaporin-4. IUBMB Life. 2010; 62(3):222–6. doi: 10.1002/iub.311 20186918

9. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 1993; 12(6):2241–7. 8508761

10. Sun H, Li L, Lou Y, Zhao H, Gao Z. Genome-wide identification and characterization of aquaporin gene family in moso bamboo (Phyllostachys edulis). Mol Biol Rep. 2016; 43(5):437–50. doi: 10.1007/s11033-016-3973-3 26993482

11. Yuan D, Li W, Hua Y, King GJ, Xu F, Shi L. Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus. Front Plant Sci. 2017; 2;8:1336. doi: 10.3389/fpls.2017.01336 28824672

12. Hove RM, Ziemann M, Bhave M. Identification and Expression Analysis of the Barley (Hordeum vulgare L.) Aquaporin Gene Family. PLoS One. 2015; 9;10(6):e0128025. doi: 10.1371/journal.pone.0128025 26057533

13. Besse M, Knipfer T, Miller A, Verdeil JL, Jahn TP, Fricke W. Developmental pattern of aquaporin expression in barley (Hordeum vulgare L.) leaves. J Exp Bot. 2011; 62(12):4127–42. doi: 10.1093/jxb/err175 21737414

14. Knipfer T, Besse M, Verdeil JL, Fricke W. Aquaporin-facilitated water uptake in barley (Hordeum vulgare L.) roots. J Exp Bot. 2011; 62(12):4115–26. doi: 10.1093/jxb/err075 21441404

15. Ligaba A, Katsuhara M, Shibasaka M, Djira G. Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare). C R Biol. 2011; 334(2):127–139. doi: 10.1016/j.crvi.2010.11.005 21333943

16. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, et al. Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol. 2005; Oct;59(3):469–84. doi: 10.1007/s11103-005-0352-1 16235111

17. Feng ZJ, Xu SC, Liu N, Zhang GW, Hu QZ, Xu ZS, et al. Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Gene. 2018; 10;646:64–73.

18. Pawłowicz I, Rapacz M, Perlikowski D, Gondek K, Kosmala A. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet. 2017; 58(4):421–435. doi: 10.1007/s13353-017-0403-8 28779288

19. Smart LB, Moskal WA, Cameron KD, Bennett AB. MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol. 2001; 42(7):686–93. doi: 10.1093/pcp/pce085 11479374

20. Hove RM, Bhave M. Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol. 2011; 75(4–5):413–430. doi: 10.1007/s11103-011-9737-5 21308399

21. Szurman-Zubrzycka ME, Zbieszczyk J, Marzec M, Jelonek J, Chmielewska B, Kurowska MM, et al. HorTILLUS—a rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.). Front Plant Sci. 2018; doi: 10.3389/fpls.2018.00216 29515615

22. Lesco M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002; 30, 325–327. doi: 10.1093/nar/30.1.325 11752327

23. Kwasniewski M, Daszkowska-Golec A, Janiak A, Chwialkowska K, Nowakowska U, Sablok G, et al. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions. J Exp Bot. 2016; 67, 1079–1094. doi: 10.1093/jxb/erv498 26585228

24. Daszkowska-Golec A, Skubacz A, Marzec M, Slota M, Kurowska M, Gajecka M, et al. Mutation in hvcbp20 (Cap Binding Protein 20) adapts barley to drought stress at phenotypic and transcriptomic levels. Front Plant Sci. 2017; doi: 10.3389/fpls.2017.00942 28626467

25. Daszkowska-Golec A, Skubacz A, Sitko K, Słota M, Kurowska M, Szarejko I. Mutation in barley ERA1 (Enhanced Response to ABA1) gene confers better photosynthesis efficiency in response to drought as revealed by transcriptomic and physiological analysis. EEB. 2018; https://doi.org/10.1016/j.envexpbot.2018.01.003.

26. Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, et al. No time to waste: transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Front Plant Sci. 2018; 9;8:2212. doi: 10.3389/fpls.2017.02212 29375595

27. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotech. 1993; 15, 532–537.

28. Rapacz M, Stepien A, Skorupa K. Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant. 2012; 34, 1723–1733.

29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25, 402–408. doi: 10.1006/meth.2001.1262 11846609

30. Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003; 339, 62–66. doi: 10.1016/s0304-3940(02)01423-4 12618301

31. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012; 29;491(7426):711–716. doi: 10.1038/nature11543 23075845

32. Prak S, Hem S, Boudet J, Viennois G, Sommerer N, Rossignol M, et al. Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins: role in subcellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics. 2008; 7(6):1019–30. doi: 10.1074/mcp.M700566-MCP200 18234664

33. Regon P, Panda P, Kshetrimayum E, Panda SK. Genome-wide comparative analysis of tonoplast intrinsic protein (TIP) genes in plants. Funct Integr Genomics. 2014; 14(4):617–29. doi: 10.1007/s10142-014-0389-9 25095751

34. Rodrigues MI, Takeda AA, Bravo JP, Maia IG. The Eucalyptus Tonoplast Intrinsic Protein (TIP) Gene Subfamily: Genomic Organization, Structural Features and Expression Profiles. Front Plant Sci. 2016; 30;7:1810.

35. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, et al. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol. 2008; 165(18):1879–88. doi: 10.1016/j.jplph.2008.05.002 18707797

36. Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants, unraveling the signaling networks. Front Plant Sci. 2014; doi: 10.3389/fpls.2014.00151 24795738

37. Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L. The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol. 2009; 12(6):690–8. doi: 10.1016/j.pbi.2009.09.002 19783200

38. Bienert GP, Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta. 2014; 1840(5):1596–604. doi: 10.1016/j.bbagen.2013.09.017 24060746

39. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007; 12;282(2):1183–1192. doi: 10.1074/jbc.M603761200 17105724

40. Ludewig U, Dynowski M. Plant aquaporin selectivity: where transport assays, computer simulations and physiology meet. Cell Mol Life Sci. 2009; 66(19):3161–75. doi: 10.1007/s00018-009-0075-6 19565186

41. Azad AK, Yoshikawa N, Ishikawa T, Sawa Y, Shibata H. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs. Biochim Biophys Acta. 2012; 1818(1):1–11. doi: 10.1016/j.bbamem.2011.09.014 21963407

42. Lee SE, Yim HK, Lim MN, Yoon I, Kim J, Hwang YS. Abscisic acid prevents the coalescence of protein storage vacuoles by upregulating expression of a tonoplast intrinsic protein gene in barley aleurone. J Exp Bot. 2015; 66(5):1191–203. doi: 10.1093/jxb/eru467 25477530

43. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, et al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 2003; 34(2):137–48. doi: 10.1046/j.1365-313x.2003.01708.x 12694590

44. Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot. 2013; 111: 1021–1058. doi: 10.1093/aob/mct067 23558912


Článek vyšel v časopise

PLOS One


2019 Číslo 12
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#