Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation
Autoři:
Peng Lean Chong aff001; Ajay Kumar Singh aff001; Swee Leong Kok aff002
Působiště autorů:
Centre for Communication System and IC Design (CSID), Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia
aff001; Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Melaka, Malaysia
aff002
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227153
Souhrn
It is well proven that electrical energy can be harvested from the living plants which can be used as a potential renewable energy source for powering wireless devices in remote areas where replacing or recharging the battery is a difficult task. Therefore, harvesting electrical energy from living plants in remote areas such as in farms or forest areas can be an ideal source of energy as these areas are rich with living plants. The present paper proposes a design of a power management circuit that can harness, store and manage the electrical energy which is harvested from the leaves of Aloe Barbadensis Miller (Aloe Vera) plants to trigger a transmitter load to power a remote sensor. The power management circuit consists of two sections namely; an energy storage system that acts as an energy storage reservoir to store the energy harvested from the plants as well as a voltage regulation system which is used to boost and manage the energy in accordance to a load operation. The experimental results show that the electrical energy harvested from the Aloe Vera under a specific setup condition can produce an output of 3.49 V and 1.1 mA. The harvested energy is being channeled to the power management circuit which can boost the voltage to 10.9 V under no load condition. The harvested energy from the plants boosted by the power management circuit can turn ON the transmitter automatically to activate a temperature and humidity sensor to measure the environmental stimuli periodically with a ton of 1.22 seconds and toff of 0.46 seconds. This proves that this new source of energy combined with a power management circuit can be employed for powering the wireless sensor network for application in the Internet of Things (IoT).
Klíčová slova:
Alternative energy – Capacitors – Electrodes – Leaves – Plant anatomy – Electrical circuits – Rectifiers – Diodes
Zdroje
1. Vullers RJM, Schaijk RV, Visser HJ, Penders J and Hoof CV. Energy harvesting for autonomous wireless sensor networks. IEEE Solid-State Circuits Mag. 2010; 4: 29–38. 10.1109/MSSC.2010.936667
2. Akbari S. Energy harvesting for wireless sensor networks review. 2014 Federated Conference on Computer Science and Information Systems. 2014; 987–992. 10.15439/2014F85
3. Roscoe NM and Judd MD. Harvesting energy from magnetic fields to power condition monitoring sensors. IEEE Sensors Journal. 2013; 13: 2263–2270. 10.1109/JSEN.2013.2251625
4. Naifar S, Bradai S, Keutel T, and Kanoun O. Design of a vibration energy harvester by twin lateral magnetoelectric transducers. 2014 IEEE International Instrumentation and Measurement Technology (I2MTC) Proceedings. 2014; 1157–1162. 10.1109/I2MTC.2014.6860925
5. Torfs T, Sterken T, Brebels S, Santana J, van den Hoven R V, Spiering N, et al. Low power wireless sensor network for building monitoring. IEEE Sensors Journal. 2013; 13: 909–915. 10.1109/JSEN.2012.2218680
6. Dementyev A and Smith J. A wearable UHF RFID-based EEG system. 2013 IEEE International Conference on RFID (RFID). 2013; 1–7. 10.1109/RFID.2013.6548128
7. Cook BS, Vyas R, Sangkil K, Trang T, Taoran L, Traille A, et al. RFID-based sensors for zero-power autonomous wireless sensor networks. IEEE Sensors Journal. 2014; 14: 2419–2431. 10.1109/JSEN.2013.2297436
8. Thomas SJ, Harrison RR, Leonardo A, and Reynolds M. A battery-free multi-channel digital neural/EMG telemetry system for flying insects. IEEE Transactions on Biomedical Circuits and Systems. 2002; 6: 424–436. 10.1109/TBCAS.2012.2222881
9. Assimonis SD, Daskalakis SN, and Bletsas A. Efficient RF harvesting for low-power input with low-cost lossy substrate rectenna grid. 2014 IEEE RFID Technology and Applications Conference (RFID-TA). 2014; 1–6. 10.1109/RFID-TA.2014.6934190
10. Dalola S, Ferrari V, Guizzetti M, Marioli D, Sardini E, Serpelloni M, et al. Autonomous sensor system with power harvesting for telemetric temperature measurements of pipes. IEEE Transactions on Instrumentation and Measurement. 2009; 58: 1471–1478. 10.1109/TIM.2009.2012946
11. Carstens T, Corradini M, Blanchard J, and Ma Z. Monitoring dry-cask storage using thermoelectric powered wireless sensors. 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 2013; 747–752. 10.1109/I2MTC.2013.6555515
12. Sardini E and Serpelloni M. Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. IEEE Transactions on Instrumentation and Measurement. 2011; 60: 1838–1844. 10.1109/TIM.2010.2089090
13. Tan YK and Panda SK. Self-autonomous wireless sensor nodes with wind energy harvesting for remote sensing of wind-driven wildfire spread. IEEE Transactions on Instrumentation and Measurement. 2011; 60: 1367–1377. 10.1109/TIM.2010.2101311
14. Hao Z, Wang G, Li W, Zhang J, Kan J. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator. PLoS ONE 10(8): e0136639. doi: 10.1371/journal.pone.0136639 26302491
15. Krinker M and Goykadosh A. Renewable and sustainable energy replacement sources. 2010 IEEE Long Island Systems, Applications, and Technology Conference. 2010; 1–4. 10.1109/LISAT.2010.5478279
16. Choo YY and Dayou J. A Method to Harvest Electrical Energy from Living Plants. Journal of Science and Technology. 2013; 5: 79–90. Available from: https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/563.
17. Himes C, Carlson E, Ricchiuti RJ, Otis BP, and Parviz BA. Ultralow Voltage Nanoelectronics Powered Directly, and Solely, From a Tree. IEEE Transactions on Nanotechnology. 2010; 9: 2–5. 10.1109/TNANO.2009.2032293
18. Tanaka A, Ishihara T, Utsunomiya F, and Douseki T. Wireless self-powered plant health-monitoring sensor system. IEEE SENSORS. 2012; 1–4. doi: 10.1109/ICSENS.2012.6411369
19. Sanjeev KS, Randhir S, Parveen L. To Investigate the Electrical Impedance of the Aloe Barbadensis Miller Leaves. International Journal of Soft Computing and Engineering (IJSCE). 2012; 2. Available from: http://www.ijsce.org/wp-content/uploads/papers/v2i5/E1052102512.pdf.
20. Faizan AS, Raminder PPS, Jang BS, Parveen L. Effect Of Microwaves On The Resistance Of Aloe Vera Leaves. International Journal of Engineering Research and Applications. 2013; 3: 242–247. Available from: https://pdfs.semanticscholar.org/2500/f4eaea9df4c11e74788dbafc9e755a409776.pdf.
21. Choo YY, Dayou J, Surugau N. Origin of Weak Electrical Energy Production from Living-Plants. International Journal of Renewable Energy Research. 2014; 4: 198–203. Available from: https://ijrer.org/ijrer/index.php/ijrer/article/download/1082/pdf.
22. Chong PL, Singh AK, Kok SL. Characterization of Aloe Barbadensis Miller leaves as a potential electrical energy source with optimum experimental setup conditions. PLoS ONE 14(6): e0218758. doi: 10.1371/journal.pone.0218758 31237903
23. Simjee FI and Chou PH. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes. IEEE Trans. Power Electron. 2008; 23: 1526–1536. 10.1109/TPEL.2008.921078
24. Tan YK and Panda SK. Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes. IEEE Trans. Power Electron. 2011; 26: 38–50. 10.1109/TPEL.2010.2056700
25. Dallago E, Danioni A, Marchesi M, and Venchi G. An autonomous power supply system supporting low power wireless sensors. IEEE Trans. Power Electron. 2012; 27: 4272–4280. 10.1109/TPEL.2012.2190525
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy