The spatio-temporal patterns of the topsoil organic carbon density and its influencing factors based on different estimation models in the grassland of Qinghai-Tibet Plateau
Autoři:
Shiliang Liu aff001; Yongxiu Sun aff001; Yuhong Dong aff002; Haidi Zhao aff001; Shikui Dong aff001; Shuang Zhao aff001; Robert Beazley aff003
Působiště autorů:
School of Environment, Beijing Normal University, Beijing, China
aff001; Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Beijing, China
aff002; Department of Natural Resources, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225952
Souhrn
The grassland soils of the Qinghai-Tibet Plateau (QTP) store a large amount of organic carbon because of the cold, humid climate, and topsoil organic carbon is quite sensitive to global climate changes. However, the spatio-temporal dynamics and factors that influence the soil organic carbon (SOC) on the QTP’s grassland are not understood well. Moreover, there are few comparative analyses of different approaches to estimate the QTP’ SOC. In this study, we estimated the storage and patterns of SOC density (SOCD) using several methods, including MODIS (moderate-resolution imaging spectroradiometer) retrieval, field data and previous empirical models (Models1-4, and soil organic matter (SOM)). And their relations with aboveground biomass, soil moisture, temperature, elevation, and soil conductivity were further explored. The results showed that SOC showed a similar variation trend in the different models, in which it decreased with increasing bulk density (BD) in the topsoil at 30 cm. For meadow and steppe grasslands, Models 1, 2, and 4 showed similar estimated values of SOCD, while Model3 had a lower value than them. SOC storage in the BD 3 and SOM methods had abnormal values, while the MODIS-NDVI, BD 1, 2, and 4 methods had similar SOC stock values for meadow and steppe grassland. Moreover, meadow grassland had a higher SOC storage than did steppe grassland, with means values of 397.9×1010 kg and 242.2×1010 kg, respectively. SOCD’s spatial distribution using MODIS-NDVI method differed clearly from the empirical models, with a significant tendency for spatial variation that increased from the northwestern to southeastern regions on the QTP. Therefore, based on the values estimated and spatial variation features, the MODIS-NDVI method may be a more feasible and valid model to estimate SOC. Moreover, the mean annual SOCD values during 2000–2015 showed an increasing trend, with a higher mean value in meadow and a lower mean value in steppe. Further, SOCD was correlated significantly and positively with aboveground biomass and soil moisture, and negatively correlated with elevation and soil conductivity. Increasing temperature had negative effects on SOCD, which was consistent with the global trend. These results indicated that topsoil moisture plays a key role in SOCD spatial patterns. Our results provide valuable support for the long-term estimation of SOCD in future research on the QTP.
Klíčová slova:
Biomass – Decomposition – Deserts – Grasslands – Remote sensing – Thermal conductivity – Carbon sequestration – Soil carbon
Zdroje
1. Liu W, Chen S, Qin X, Baumann F, Scholten T, Zhou Z, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters. 2012; 7(3). doi: 10.1088/1748-9326/7/3/035401
2. Zhang F, Zhu B, Zheng J, Xiong Z, Jiang F Han L, et al. Soil properties as indicators of desertification in an alpine meadow ecosystem of the Qinghai-Tibet Plateau, China. Environmental Earth Sciences. 2013; 70(1): 249–258.
3. Wen L, Dong S, Li Y, Wang X, Li X, Shi J, et al. The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil. 2013; 368(1–2): 329–340. doi: 10.1371/journal.pone.0058432 23469278
4. Ni J. Carbon storage in grasslands of China. Journal of Arid Environments. 2002; 50(2): 205–218.
5. Li Y, Dong S, Wen L, Wang X, Wu Y. The effects of fencing on carbon stocks in the degraded alpine grasslands of the Qinghai-Tibetan Plateau. Journal of Environmental Management. 2013; 128: 393–399. doi: 10.1016/j.jenvman.2013.05.058 23792816
6. Wen L, Dong S, Li Y, Li X, Shi J, Wang Y, et al. Effect of degradation intensity on grassland ecosystem services in the alpine Region of Qinghai-Tibetan Plateau, China. Plos One. 2013; 8(3). doi: 10.1371/journal.pone.0058432 23469278
7. Yang Y, Fang J, Tang Y, Ji C, Zheng C, He J, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology. 2008; 14(7): 1592–1599. doi: 10.1111/j.1365-2486.2008.01591.x
8. Zhou Y, Webster R, Rossel RAV, Shi Z, Chen S. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s. Geoderma. 2019; 334: 124–133. doi: 10.1016/j.geoderma.2018.07.037
9. Doerfer C, Kuehn P, Baumann F, He J, Scholten T. Soil organic carbon pools and stocks in permafrost-affected soils on the Tibetan Plateau. Plos One. 2013; 8(2). doi: 10.1371/journal.pone.0057024 23468904
10. Rial M, Martinez Cortizas A, Taboada T, Rodriguez Lado L. Soil organic carbon stocks in Santa Cruz Island, Galapagos, under different climate change scenarios. Catena. 2017; 156: 74–81. doi: 10.1016/j.catena.2017.03.020
11. Xie X, Sun B, Zhou H, Li Z, Li A. Organic carbon density and storage in soils of China and spatial analysis. Acta Pedologica Sinica. 2004; 41(1): 35–43.
12. Yu D, Shi X, Sun W, Wang H, Liu Q, Zhao Y. Estimation of China soil organic carbon storage and density based on 1:1,000,000 soil database. The Journal of Applied Ecology. 2005; 16(12): 2279–2283.
13. Wu Y, Liu G, Fu B, Guo Y. Study on the vertical distribution of soil organic carbon density in the Tibetan Plateau. Acta Scientiae Circumstantiae. 2008; 28(2): 362–367.
14. Zhong C, Yang Z, Xia X, Hou Q, Jiang W. Estimation of soil organic carbon storage and analysis of soil carbon source/sink factors in Qinghai Province. Geoscience. 2012; 26(5): 896–909.
15. Ma K, Zhang Y, Tang S, Liu J. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau. Catena. 2016; 144: 102–108. doi: 10.1016/j.catena.2016.05.014
16. Huang N, He J, Niu Z. Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecological Indicators. 2013; 26: 117–125. doi: 10.1016/j.ecolind.2012.10.027
17. Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology. 2009; 15(11): 2723–2729. doi: 10.1111/j.1365-2486.2009.01924.x
18. Nie X, Yang L, Li F, Xiong F, Li C, Zhou G. Storage, patterns and controls of soil organic carbon in the alpine shrubland in the Three Rivers Source Region on the Qinghai-Tibetan Plateau. Catena. 2019; 178: 154–162. doi: 10.1016/j.catena.2019.03.019
19. Gao T, Xu B, Yang X, Jin Y, Ma H, Li J, et al. Review of researches on biomass carbon Stock in grassland ecosystem of Qinghai-Tibetan Plateau. Progress in Geography. 2012; 31(12): 1724–1731.
20. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 2002; 83(1–2): 195–213. doi: 10.1016/s0034-4257(02)00096-2
21. Wang X, Li Y, Gong X, Niu Y, Chen Y, Shi X, et al. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma. 2019; 343: 155–165. doi: 10.1016/j.geoderma.2019.02.030
22. Patton NR, Lohse KA, Seyfried MS, Godsey SE, Parsons SB. Topographic controls of soil organic carbon on soil-mantled landscapes. Scientific Reports. 2019; 9. doi: 10.1038/s41598-019-42556-5 31015573
23. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma. 2019; 333: 149–162. https://doi.org/10.1016/j.geoderma.2018.07.026
24. Yuan Z, Fang C, Zhang R, Li F, Javaid MM, Janssens IA. Topographic influences on soil properties and aboveground biomass in lucerne-rich vegetation in a semi-arid environment. Geoderma. 2019; 344: 137–143. doi: 10.1016/j.geoderma.2019.03.003
25. Wu X, Fang H, Zhao L, Wu T, Li R, Ren Z, et al. Mineralisation and changes in the fractions of soil organic matter in soils of the permafrost region, Qinghai- Tibet Plateau, China. Permafrost and Periglacial Processes. 2014; 25(1): 35–44. doi: 10.1002/ppp.1796
26. Wu X, Zhao L, Chen M, Fang H, Yue G, Chen J, et al. Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the central western Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes. 2012; 23(2): 162–169. doi: 10.1002/ppp.1740
27. Yang J, Guo N, Huang L, Jia J. Ananlyses on MODIS-NDVI index saturation in northwest China. Plateau Meteorological. 2008; (04): 896–903.
28. Du MY, Kawashima S, Yonemura S, Zhang XZ, Chen SB. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change. 2004; 41(3–4): 241–249. doi: 10.1016/j.gloplacha.2004.01.010
29. Ding M, Zhang Y, Liu L, Zhang W, Wang Z, Bai W. The relationship between NDVI and precipitation on the Tibetan Plateau. Journal of Geographical Sciences. 2007; 17(3): 259–268. doi: 10.1007/s11442-007-0259-7
30. Juley H, Karen L, Gretchen H. Rangeland inventory as a tool for science education. 2004; 26(1): 32.
31. Raynolds MK, Walker DA, Maier HA. NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment. 2006; 102(3–4): 271–281. doi: 10.1016/j.rse.2006.02.016
32. Shangguan W, Dai Y, Liu B, Zhu A, Duan Q, Wu L, et al. A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems. 2013; 5(2): 212–224. doi: 10.1002/jame.20026
33. Stow D, Daeschner S, Hope A, Douglas D, Petersen A, Myneni R, et al. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s. International Journal of Remote Sensing. 2003; 24(5): 1111–1117. doi: 10.1080/0143116021000020144
34. Dai S, Zhang B, Wang H, Wang Y, Guo L Wang X, et al. Vegetation cover change and the driving factors over northwest China. Journal of Arid Land. 2011; 3(1): 25–33. doi: 10.3724/sp.J.1227.2011.00025
35. Zhang G, Dong J, Xiao X, Hu Z, Sheldon S. Effectiveness of ecological restoration projects in Horqin Sandy Land, China based on SPOT-VGT NDVI data. Ecological Engineering. 2012; 38(1): 20–29. doi: 10.1016/j.ecoleng.2011.09.005
36. Zhang B, Liu F, Ding J, Fang K, Yang G, Liu L, et al. Soil inorganic carbon stock in alpine grasslands on the Qinghai-Xizang Plateau: an updated evaluation using deep cores. Chinese Journal of Plant Ecology. 2016; 40(2): 93–101.
37. Tian Y, Ouyang H, Xu X, Song M, Zhou C. Distribution characteristics of soil organic carbon storage and density on the Qinghai-Tibet Plateau. Acta Pedologica Sinica. 2008; 45(5): 933–942.
38. Fensholt R, Rasmussen K, Nielsen TT, Mbow C. Evaluation of earth observation based long term vegetation trends-intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment. 2009; 113(9): 1886–1898. doi: 10.1016/j.rse.2009.04.004
39. Stow DA, Hope A, McGuire D, Verbyla D, Gamon J, Huemmrich F, et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment. 2004; 89(3): 281–308. doi: 10.1016/j.rse.2003.10.018
40. Peng J, Liu Z, Liu Y, Wu J, Han Y. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst Exponent. Ecological Indicators. 2012; 14(1): 28–39. doi: 10.1016/j.ecolind.2011.08.011
41. Liu S L, Zhang Y Q, Cheng F Y, Hou X Y, Zhao S. Response of grassland degradation to drought at different time-scales in Qinghai Province: spatio-temporal characteristics, correlation, and implications. Remote Sensing. 2017; 9(12): 1–18. doi: 10.3390/rs9121329
42. Gao Q, Li Y, Wan Y, Qin X, Jiangcun W, Liu Y. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Climatic Change. 2009; 97(3–4): 515–528. doi: 10.1007/s10584-009-9617-z
43. Fan J, Shao Q, Liu J, Wang J, Harris W, Chen Z, et al. Assessment of effects of climate change and grazing activity on grassland yield in the Three Rivers Headwaters Region of Qinghai-Tibet Plateau, China. Environmental Monitoring and Assessment. 2010; 170(1–4): 571–584. doi: 10.1007/s10661-009-1258-1 20041346
44. Gao Q, Li Y, Wan Y. Grassland degradation in Northern Tibet based on remote sensing data. Journal of Geographical Sciences. 2006; 16(2): 165–173. doi: 10.1007/s11442-006-0204-1
45. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications. 2000; 10(2): 423–436. doi: 10.1890/1051-0761(2000)010[0423:Tvdoso]2.0.Co;2
46. Cao Z, Yi C, Wang Y. Soil organic carbon characteristics of different alpine grasslands in Qinghai-Tibet Plateau. Anhui Agricultural Sciences Bulletin. 2016; 22(Z1): 14–17.
47. Ding J Z, Chen L Y, Ji C J, Hugelius G, Li Y N, Liu L, et al Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience. 2017; 10(6): 420.
48. Wang G X, Qian J, Cheng GD, Lai YM. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment. 2002; 291(1–3): 207–217. doi: 10.1016/s0048-9697(01)01100-7 12150438
49. Pei H, Zhu Z, Qiao Y, Li X, Sun H. Discussion on soil humus and organic phosphorus types in different meadow vegetation types. Acta Prataculturae Sinica. 2001; 10(04): 18–23.
50. Piao S, Cui M, Chen A, Wang X, Ciais P, Liu J, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology. 2011; 151(12): 1599–1608. doi: 10.1016/j.agrformet.2011.06.016
51. Wang J, Ouyang H, Wang Z H, Chang T J, Li P, Shen Z X, et al. Influencing factors of topsoil labile organic carbon in alpine grassland ecosystem on the southeast slope of Mountain Nyenquentanglha. Chinese Journal of Eco-Agriculture. 2010; 18(2): 235–240.
52. Wang J L, Ouyang H, Wang Z H, Chang T J, Shen Z X, Zhong Z M. Distribution rule of vegetation carbon density and its relationship with climatic factor in alpine grassland ecosystem of Qinghai-Tibetan Plateau. Journal of Plant Resources and Environment. 2010; 19(1): 1–7.
53. Li L, Yang S, Wang Z, Zhu X, Tang H. Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arctic Antarctic and Alpine Research. 2010; 42(4): 449–457. doi: 10.1657/1938-4246-42.4.449
54. Zhou Z, Yi S, Chen J, Ye B, Sheng Y, Wang G, et al. Responses of alpine grassland to climate warming and permafrost thawing in two basins with different precipitation regimes on the Qinghai-Tibetan Plateau. Arctic Antarctic and Alpine Research. 2015; 47(1): 125–131. doi: 10.1657/aaar0013-098
55. Xu W, Yuan W, Cui L, Ma M, Zhang F. Responses of soil organic carbon decomposition to warming depend on the natural warming gradient. Geoderma. 2019; 343: 10–18. doi: 10.1016/j.geoderma.2019.02.017
56. Ou Y, Rousseau A N, Wang L, Yan B. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors-a case study of the Black Soil Region of Northeastern China. Agriculture Ecosystems & Environment. 2017; 245: 22–31. doi: 10.1016/j.agee.2017.05.003
57. Zhou Y, Hartemink AE, Shi Z, Liang Z, Lu Y. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment. 2019; 647: 1230–1238. doi: 10.1016/j.scitotenv.2018.08.016 30180331
58. Chen L, He Z, Du J, Yang J, Zhu X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena. 2016; 137: 37–43.
59. Reichstein M, Bahn M, Ciais P, Frank D, Mahecha M D, Seneviratne S I, et al. Climate extremes and the carbon cycle. Nature. 2013; 500(7462): 287–295. doi: 10.1038/nature12350 23955228
60. Huang J, Minasny B, McBratney AB, Padarian J, Triantafilis J. The location and scale specific correlation between temperature and soil carbon sequestration across the globe. Science of the Total Environment. 2018; 615: 540–548. doi: 10.1016/j.scitotenv.2017.09.136 28988089
61. Tashi S, Singh B, Keitel C, Adams M. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data. Global Change Biology. 2016; 22(6): 2255–2268. doi: 10.1111/gcb.13234 26840803
62. Yang R, Su Y, Wang M, Wang T, Yang X, Fan G, et al. Spatial pattern of soil organic carbon in desert grasslands of the diluvial-alluvial plains of northern Qilian Mountains. Journal of Arid Land. 2014; 6(2): 136–144. doi: 10.1007/s40333-013-0200-0
63. Zhao B, Li Z, Li P, Xu G, Gao H, Cheng Y, et al Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma. 2017; 296: 10–17. doi: 10.1016/j.geoderma.2017.02.010
64. Yang H, Wang Z, Jia R. Distribution and storage of soil organic carbon across the desert grasslands in the southeastern fringe of the Tengger Desert, China. Chinese Journal of Plant Ecology. 2018; 42(03): 288–296. doi: 10.17521/cjpe.2017.0068
65. Chen L, Gong J, Fu B, Huang Z, Huang Y, Gui L. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, loess plateau of China. Ecological Research. 2007; 22(4): 641–648. doi: 10.1007/s11284-006-0065-1
66. Yan L, Zhou G S, Wang Y H, Hu TY, Sui X H. The spatial and temporal dynamics of carbon budget in the alpine grasslands on the Qinghai-Tibetan Plateau using the terrestrial ecosystem model. Journal of Cleaner Production. 2015; 107: 195–201. https://doi.org/10.1016/j.jclepro.2015.04.140
67. Tian H, Melillo J, Lu C, Kicklighter D, Liu M, Ren W, et al China’s terrestrial carbon balance: contributions from multiple global change factors. Global Biogeochemical Cycles. 2011; 25. doi: 10.1029/2010gb003838
68. Wang X Y, Li Y G, Gong X W, Niu Y Y, Chen Y P, Shi X P, et al. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma. 2019; 343: 155–165. doi: 10.1016/j.geoderma.2019.02.030
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy