Demographic characteristics, site and phylogenetic distribution of dogs with appendicular osteosarcoma: 744 dogs (2000-2015)
Autoři:
Joanne L. Tuohy aff001; Marejka H. Shaevitz aff002; Laura D. Garrett aff002; Audrey Ruple aff003; Laura E. Selmic aff004
Působiště autorů:
Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
aff001; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, United States of America
aff002; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
aff003; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223243
Souhrn
Objective
To report demographic characteristics of a contemporary population of dogs with appendicular osteosarcoma and assess the relationship between demographic characteristics, site distribution, and phylogenetic breed clusters.
Design
Retrospective case series.
Methods
A search of the Veterinary Medical Database was performed for dogs with appendicular osteosarcoma as a new diagnosis. Entries were reviewed for the sex, neuter status, age at diagnosis, breed, affected limb, and tumor location. The reported breed for purebred dogs was used to categorize each dog into one of five phylogenetic groups based on microsatellite analysis.
Results
744 client-owned dogs were included in the study. Study dogs were represented by a male-to-female ratio of 0.95:1.0, the majority of which (80.9%) were neutered. Most dogs were diagnosed between 7–10 years of age. The majority (77.8%) of dogs were large or giant-breed dogs. Purebred dogs comprised 80.4% of the population. The most common purebred breed affected by OS was the Rottweiler (17.1%). The most common phylogenetic group represented was Mastiff-Terrier (M-T, 26.3%). OS was more commonly located in the forelimb (64.2%) versus the hindlimb (35.8%), and the humerus was the most common site (20.9%). The distribution of age groups and tumor locations were significantly different between phylogenetic clusters. The distribution of age groups and neuter status were significantly different between size groups.
Conclusions and significance
The demographic data of canine appendicular OS are similar to previous reports. The data on phylogenetic associations can guide future studies aimed at evaluating the genomic mutations that contribute to OS development and its biological behavior.
Klíčová slova:
Age distribution – Age groups – Animal phylogenetics – Dogs – Mammalian genomics – Pets and companion animals – Veterinary diagnostics
Zdroje
1. Brodey RS, Mc GJ, Reynolds H. A clinical and radiological study of canine bone neoplasms. I. J Am Vet Med Assoc. 1959;134(2):53–71. Epub 1959/01/15. 13610763.
2. Brodey RS, Sauer RM, Medway W. Canine Bone Neoplasms. J Am Vet Med Assoc. 1963;143:471–95. Epub 1963/09/01. 14063231.
3. Brodey RS, Riser WH. Canine osteosarcoma. A clinicopathologic study of 194 cases. Clin Orthop Relat Res. 1969;62:54–64. Epub 1969/01/01. 5251443.
4. Dorfman SK, Hurvitz AI, Patnaik AK. Primary and secondary bone tumours in the dog. J Small Anim Pract. 1977;18(5):313–26. Epub 1977/05/01. doi: 10.1111/j.1748-5827.1977.tb05890.x 267798.
5. Ling GV, Morgan JP, Pool RR. Primary bone rumors in the dog: a combined clinical, radiographic, and histologic approach to early diagnosis. J Am Vet Med Assoc. 1974;165(1):55–67. Epub 1974/07/01. 4600463.
6. Jongeward SJ. Primary bone tumors. The Veterinary clinics of North America Small animal practice. 1985;15(3):609–41. Epub 1985/05/01. doi: 10.1016/s0195-5616(85)50061-3 3892872.
7. Trost MEK, Brown G.D., Barros C.C., Irogoyen C.S.L., Fighera L.F., Inkelmann R.A., da Silva M.A., T.M. Primary bone neoplasms in dogs: 90 cases. Presq Vet Bras. 2012;32(12):1329–35.
8. Sapierzynski R, Czopowicz M. The animal-dependent risk factors in canine osteosarcomas. Pol J Vet Sci. 2017;20(2):293–8. Epub 2017/09/03. doi: 10.1515/pjvs-2017-0035 28865206.
9. Rebhun RB, Kass PH, Kent MS, Watson KD, Withers SS, Culp WTN, et al. Evaluation of optimal water fluoridation on the incidence and skeletal distribution of naturally arising osteosarcoma in pet dogs. Vet Comp Oncol. 2017;15(2):441–9. Epub 2016/01/15. doi: 10.1111/vco.12188 26762869; PubMed Central PMCID: PMC4996743.
10. Leeper H, Viall A, Ruaux C, Bracha S. Preliminary evaluation of serum total cholesterol concentrations in dogs with osteosarcoma. J Small Anim Pract. 2017;58(10):562–9. Epub 2017/07/01. doi: 10.1111/jsap.12702 28660727.
11. Misdorp W, Hart AA. Some prognostic and epidemiologic factors in canine osteosarcoma. J Natl Cancer Inst. 1979;62(3):537–45. Epub 1979/03/01. doi: 10.1093/jnci/62.3.537 283283.
12. Egenvall A, Nodtvedt A, von Euler H. Bone tumors in a population of 400 000 insured Swedish dogs up to 10 y of age: incidence and survival. Can J Vet Res. 2007;71(4):292–9. Epub 2007/10/25. 17955904; PubMed Central PMCID: PMC1940277.
13. Ru G, Terracini B, Glickman LT. Host related risk factors for canine osteosarcoma. Vet J. 1998;156(1):31–9. Epub 1998/08/06. doi: 10.1016/s1090-0233(98)80059-2 9691849.
14. Brodey RS, Abt DA. Results of surgical treatment in 65 dogs with osteosarcoma. J Am Vet Med Assoc. 1976;168(11):1032–5. Epub 1976/06/01. 1064592.
15. Romano FR, Heinze CR, Barber LG, Mason JB, Freeman LM. Association between Body Condition Score and Cancer Prognosis in Dogs with Lymphoma and Osteosarcoma. J Vet Intern Med. 2016;30(4):1179–86. Epub 2016/06/10. doi: 10.1111/jvim.13965 27279003; PubMed Central PMCID: PMC5153966.
16. Skorupski KA, Uhl JM, Szivek A, Allstadt Frazier SD, Rebhun RB, Rodriguez CO Jr. Carboplatin versus alternating carboplatin and doxorubicin for the adjuvant treatment of canine appendicular osteosarcoma: a randomized, phase III trial. Vet Comp Oncol. 2016;14(1):81–7. Epub 2013/10/15. doi: 10.1111/vco.12069 24118677; PubMed Central PMCID: PMC5012431.
17. Spodnick GJ, Berg J, Rand WM, Schelling SH, Couto G, Harvey HJ, et al. Prognosis for dogs with appendicular osteosarcoma treated by amputation alone: 162 cases (1978–1988). J Am Vet Med Assoc. 1992;200(7):995–9. Epub 1992/04/01. 1577656.
18. Story AL, Boston SE, Kilkenny JJ, Singh A, Woods JP, Culp WTN, et al. Evaluation of Weight Change During Carboplatin Therapy in Dogs With Appendicular Osteosarcoma. J Vet Intern Med. 2017;31(4):1159–62. Epub 2017/05/16. doi: 10.1111/jvim.14724 28503759; PubMed Central PMCID: PMC5508317.
19. Belanger JM, Bellumori TP, Bannasch DL, Famula TR, Oberbauer AM. Correlation of neuter status and expression of heritable disorders. Canine Genet Epidemiol. 2017;4:6. Epub 2017/06/01. doi: 10.1186/s40575-017-0044-6 28560045; PubMed Central PMCID: PMC5445488.
20. Cooley DM, Beranek BC, Schlittler DL, Glickman NW, Glickman LT, Waters DJ. Endogenous gonadal hormone exposure and bone sarcoma risk. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1434–40. Epub 2002/11/16. 12433723.
21. Gruntzig K, Graf R, Boo G, Guscetti F, Hassig M, Axhausen KW, et al. Swiss Canine Cancer Registry 1955–2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. J Comp Pathol. 2016;155(2–3):156–70. Epub 2016/07/14. doi: 10.1016/j.jcpa.2016.05.011 27406312.
22. Rosenberger JA, Pablo NV, Crawford PC. Prevalence of and intrinsic risk factors for appendicular osteosarcoma in dogs: 179 cases (1996–2005). J Am Vet Med Assoc. 2007;231(7):1076–80. Epub 2007/10/06. doi: 10.2460/javma.231.7.1076 17916033.
23. Anfinsen KP, Grotmol T, Bruland OS, Jonasdottir TJ. Breed-specific incidence rates of canine primary bone tumors—a population based survey of dogs in Norway. Can J Vet Res. 2011;75(3):209–15. Epub 2012/01/03. 22210997; PubMed Central PMCID: PMC3122972.
24. McNeill CJ, Overley B, Shofer FS, Kent MS, Clifford CA, Samluk M, et al. Characterization of the biological behaviour of appendicular osteosarcoma in Rottweilers and a comparison with other breeds: a review of 258 dogs. Vet Comp Oncol. 2007;5(2):90–8. Epub 2007/06/01. doi: 10.1111/j.1476-5829.2006.00116.x 19754792.
25. Wolke RE, Nielsen SW. Site incidence of canine osteosarcoma. J Small Anim Pract. 1966;7(7):489–92. Epub 1966/07/01. doi: 10.1111/j.1748-5827.1966.tb04475.x 5222029.
26. Arthur EG, Arthur GL, Keeler MR, Bryan JN. Risk of Osteosarcoma in Dogs After Open Fracture Fixation. Vet Surg. 2016;45(1):30–5. Epub 2015/11/26. doi: 10.1111/vsu.12416 26595882.
27. Knecht CD, Priester WA. Musculoskeletal tumors in dogs. J Am Vet Med Assoc. 1978;172(1):72–4. Epub 1978/01/01. 272367.
28. Eberle N, Fork M, von Babo V, Nolte I, Simon D. Comparison of examination of thoracic radiographs and thoracic computed tomography in dogs with appendicular osteosarcoma. Vet Comp Oncol. 2011;9(2):131–40. Epub 2011/05/17. doi: 10.1111/j.1476-5829.2010.00241.x 21569198.
29. Selvarajah GT, Kirpensteijn J, van Wolferen ME, Rao NA, Fieten H, Mol JA. Gene expression profiling of canine osteosarcoma reveals genes associated with short and long survival times. Mol Cancer. 2009;8:72. doi: 10.1186/1476-4598-8-72 19735553; PubMed Central PMCID: PMC2746177.
30. Thomas R, Wang HJ, Tsai PC, Langford CF, Fosmire SP, Jubala CM, et al. Influence of genetic background on tumor karyotypes: evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res. 2009;17(3):365–77. doi: 10.1007/s10577-009-9028-z 19337847; PubMed Central PMCID: PMC3758998.
31. Phillips JC, Stephenson B, Hauck M, Dillberger J. Heritability and segregation analysis of osteosarcoma in the Scottish deerhound. Genomics. 2007;90(3):354–63. Epub 2007/07/14. doi: 10.1016/j.ygeno.2007.05.001 17628392.
32. Phillips JC, Lembcke L, Chamberlin T. A novel locus for canine osteosarcoma (OSA1) maps to CFA34, the canine orthologue of human 3q26. Genomics. 2010;96(4):220–7. doi: 10.1016/j.ygeno.2010.07.002 20647041.
33. Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I, Wright J, et al. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biol. 2013;14(12):R132. doi: 10.1186/gb-2013-14-12-r132 24330828; PubMed Central PMCID: PMC4053774.
34. Parker HG. Genomic analyses of modern dog breeds. Mamm Genome. 2012;23(1–2):19–27. Epub 2012/01/11. doi: 10.1007/s00335-011-9387-6 22231497; PubMed Central PMCID: PMC3559126.
35. Bartges J, Boynton B, Vogt AH, Krauter E, Lambrecht K, Svec R, et al. AAHA canine life stage guidelines. J Am Anim Hosp Assoc. 2012;48(1):1–11. Epub 2012/01/12. doi: 10.5326/JAAHA-MS-4009 22234047.
36. Parker HG, Kukekova AV, Akey DT, Goldstein O, Kirkness EF, Baysac KC, et al. Breed relationships facilitate fine-mapping studies: a 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds. Genome Res. 2007;17(11):1562–71. Epub 2007/10/06. doi: 10.1101/gr.6772807 17916641; PubMed Central PMCID: PMC2045139.
37. AKC. Dog Breeds. Retrieved from https://www.akc.org/dog-breeds/.
38. Hill’s. Hill’s Dog Breeds. Retrieved from https://www.hillspet.com/dog-care/breeds.
39. Dillberger JE, McAtee SA. Osteosarcoma inheritance in two families of Scottish deerhounds. Canine Genet Epidemiol. 2017;4:3. doi: 10.1186/s40575-017-0042-8 28331626; PubMed Central PMCID: PMC5356397.
40. Dobson JM. Breed-predispositions to cancer in pedigree dogs. ISRN Vet Sci. 2013;2013:941275. Epub 2013/06/06. doi: 10.1155/2013/941275 23738139; PubMed Central PMCID: PMC3658424.
41. Friebele JC, Peck J, Pan X, Abdel-Rasoul M, Mayerson JL. Osteosarcoma: A Meta-Analysis and Review of the Literature. Am J Orthop (Belle Mead NJ). 2015;44(12):547–53. 26665241.
42. Kuntz CA, Asselin TL, Dernell WS, Powers BE, Straw RC, Withrow SJ. Limb salvage surgery for osteosarcoma of the proximal humerus: outcome in 17 dogs. Vet Surg. 1998;27(5):417–22. doi: 10.1111/j.1532-950x.1998.tb00150.x 9749511.
43. Sottnik JL, Rao S, Lafferty MH, Thamm DH, Morley PS, Withrow SJ, et al. Association of blood monocyte and lymphocyte count and disease-free interval in dogs with osteosarcoma. J Vet Intern Med. 2010;24(6):1439–44. Epub 2010/09/16. doi: 10.1111/j.1939-1676.2010.0591.x 20840314.
44. Boerman I, Selvarajah GT, Nielen M, Kirpensteijn J. Prognostic factors in canine appendicular osteosarcoma—a meta-analysis. BMC Vet Res. 2012;8:56. doi: 10.1186/1746-6148-8-56 22587466; PubMed Central PMCID: PMC3482154.
45. Tjalma RA. Canine bone sarcoma: estimation of relative risk as a function of body size. J Natl Cancer Inst. 1966;36(6):1137–50. Epub 1966/06/01. 5221997.
46. Banfield. State of Pet Health 2013 Report. Retrieved from https://www.banfield.com/Banfield/media/PDF/Downloads/soph/Banfield-State-of-Pet-Health-Report_2013.pdf 2013.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy