Agriculture development and CO2 emissions nexus in Saudi Arabia
Autoři:
Haider Mahmood aff001; Tarek Tawfik Yousef Alkhateeb aff001; Maleeha Mohammed Zaaf Al-Qahtani aff003; Zafrul Allam aff001; Nawaz Ahmad aff004; Maham Furqan aff005
Působiště autorů:
College of Business Administration, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
aff001; Kafr Elshiekh University, Kafr Elshiekh, Egypt
aff002; College of Education, Prince Sattam bin Abdulaziz University, Al-Dilam, Saudi Arabia
aff003; University of Lahore, Lahore, Pakistan
aff004; S&P Global Market Intelligence, Islamabad, Pakistan
aff005
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225865
Souhrn
The agriculture sector may help to improve the environment of any country. The purpose of this research is to test the existence of environmental Kuznets curve (EKC) hypothesis while keeping the energy consumption and agriculture share in income into account and analyze their effects on the CO2 emissions per capita of Saudi Arabia. We test both symmetrical, asymmetrical and quadratic effects of agriculture sector on the CO2 emissions. An inverted U-shaped relationship between gross domestic product (GDP) per capita and CO2 emissions per capita is found. Hence, EKC hypothesis is validated with a turning point at GDP per capita of 77,068 constant Saudi Riyal. Further, a negative and significant effect of agriculture sector on the CO2 emissions per capita has been found both in symmetrical and asymmetrical analyses. The magnitudes of effects of increasing and decreasing agriculture share are found statistically different on the CO2 emissions, and rising agriculture share in GDP has larger effect than that of decreasing agriculture share. An inverted U-shaped relationship is also found between agriculture share in GDP and CO2 emissions per capita with a turning point at 3.22% agriculture share in GDP.
Klíčová slova:
Agriculture – Carbon dioxide – Crops – Economic analysis – economic growth – Finance – Pollution – Saudi Arabia
Zdroje
1. Lewis WA, Economic development with unlimited supplies of labour. The Manchester school 1954; 22(2): 139–191.
2. Matsuyama K, Agricultural productivity, comparative advantage, and economic growth. Journal of Economic Theory 1992; 58(2): 317–334.
3. Smil V, China’s environment and security: Simple myths and complex realities. SAIS Review 1997; 17: 107–126.
4. Sayer J, Cassman KG, Agricultural innovation to protect the environment. Proceedings of the National Academy of Sciences 2013; 110(21): 8345–8348.
5. Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A et al., Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient Cycling in Agroecosystems 1997; 49(3): 221–228.
6. Al-Zahrani KH, Al-Shayaa MS, Baig MB, Water conservation in the Kingdom of Saudi Arabia for a better environment: implications for extension and education. Bulgarian J Agric Sci 2011; 17(3): 389–395.
7. Darfaoui EM, Assiri AA, Response to climate change in the Kingdom of Saudi Arabia. Director-General of the Department of Natural Resources, MOA. KSA. 2010. (accessed on 11 March 2019)
8. Saudi Arabian Monetary Agency, Yearly Statistics. Government of Saudi Arabia, Riyadh, Saudi Arabia. http://www.sama.gov.sa/en-US/EconomicReports/Pages/YearlyStatistics.aspx
9. Keynes JM, The general theory of employment, interest and money. Macmillan, London, 1936; ISBN: 1535221986.
10. Grossman GM, Krueger AB, Economic growth and the environment. The Quarterly Journal of Economics 1995; 110(2): 353–377.
11. Dinda S, Environmental Kuznets Curve Hypothesis: A Survey. Ecological Economics 2004; 49: 431–455.
12. Dogan E, Turkekul B, CO2 emissions, real output, energy consumption, trade, urbanization and financial development: testing the EKC hypothesis for the USA. Environmental Science and Pollution Research 2016; 23(2): 1203–1213. doi: 10.1007/s11356-015-5323-8 26351068
13. Mahmood H, Maalel N, Zarrad O, Trade openness and CO2 emissions: Evidence from Tunisia. Sustainability 2019; 11(12): 3264.
14. Mahmood H, Furqan M, Bagais O, Environmental accounting of financial development and foreign investment: spatial analyses of East Asia. Sustainability 2019; 11(1): 13.
15. Shujah-ur-Rahman, Chen S, Saleem N, Bari MW, Financial development and its moderating role in the environmental Kuznets curve: evidence from Pakistan. Environmental Science and Pollution Research 2019; 26(19): 19305–19319. doi: 10.1007/s11356-019-05290-z 31073837
16. Ullah A, Khan D, Khan I, Zheng S, Does the agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environmental Science and Pollution Research 2018; 25(14): 13938–13955. doi: 10.1007/s11356-018-1530-4 29516420
17. Long X, Luo Y, Wu C, Zhang J, The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014. Environmental Science and Pollution Research 2018; 25(13): 13093–13101. doi: 10.1007/s11356-018-1549-6 29488199
18. Grossman GM, Krueger AB, Environmental impacts of the North American Free Trade Agreement. NBER, Working paper 3914; 1991.
19. Selden TM, Song D, Environmental quality and development: is there a Kuznets curve for air pollution emissions? Journal of Environmental Economics and Management 1994; 27(2): 147–162.
20. de Bruyn SM, van den Bergh JCJM, Opschoor JB, Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curve. Ecological Economics 1998; 25: 161–175.
21. Churchill SA, Inekwe J, Ivanovski K, Smyth R, The Environmental Kuznets Curve in the OECD: 1870–2014. Energy Economics 2018; 75: 389–399.
22. Albulescu CT, Tiwari AK, Yoon S-M, Kang SH, FDI, income, and environmental pollution in Latin America: Replication and extension using panel quantiles regression analysis. Energy Economics 2019; https://doi.org/10.1016/j.eneco.2019.104504
23. Ravindra K, Singh T, Mor S, Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production 2019; 208: 261–273.
24. Leitao NC, The relationship between carbon dioxide emissions and Portuguese agriculture productivity. Studies in Agriculture Economics 2018; 120(3): 143–149.
25. Chandio AA, Jiang Y, Rauf A, Mirani AA, Shar RU, Ahmad F et al., Does Energy-Growth and Environment Quality Matter for Agriculture Sector in Pakistan or not? An Application of Cointegration Approach. Energies 2019; 12(10): 1879.
26. Ahmad N, Iqbal A, Mahmood H, CO2 Emission, Population and Industrial Growth Linkages in selected South Asian countries: A co-integration analysis. World Applied Sciences Journal 2013; 21(4): 615–622.
27. Shahbaz M, Shahzad SJH, Ahmad N, Alam S, Financial development and environmental quality: The way forward. Energy Policy 2016; 98: 353–364.
28. Alkhateeb TTY, Mahmood H, Energy consumption and trade openness nexus in Egypt: Asymmetry analysis. Energies 2019; 12(10): 2018.
29. Mahmood H, Alkhateeb TTY, Trade and environment nexus in Saudi Arabia: An environmental Kuznets curve hypothesis. International Journal of Energy Economics and Policy 2017; 7(5): 291–295.
30. Mahmood H, Alrasheed AS, Furqan M, Financial market development and pollution nexus in Saudi Arabia: Asymmetrical analysis. Energies 2018; 11(12): 3462.
31. Alsamara M, Mrabet Z, Saleh AS, Anwar S, The environmental Kuznets curve relationship: a case study of the Gulf Cooperation Council region. Environmental Science and Pollution Research 2018; 25(33): 33183–33195. doi: 10.1007/s11356-018-3161-1 30255266
32. Raggad B, Carbon dioxide emissions, economic growth, energy use, and urbanization in Saudi Arabia: evidence from the ARDL approach and impulse saturation break tests. Environmental Science and Pollution Research 2018; 25(15): 14882–14898. doi: 10.1007/s11356-018-1698-7 29546516
33. World Bank. World Development Indicators. Washington, D.C.: The World Bank 2019.
34. Ng S, Perron P, Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica 2001; 66: 1519–1554.
35. Pesaran MH, Shin Y, Smith RJ, Structural analysis of vector error correction models with exogenous I(1) variables. Journal of Econometrics 2001; 97(2): 293–343.
36. Kripfganz S, Schneider DC, Response surface regressions for critical value bounds and approximate p-values in equilibrium correction models. Manuscript, University of Exeter and Max Planck Institute for Demographic Research, 2018. www.kripfganz.de
37. Shin Y, Yu B, Greenwood-Nimmo M, Modelling asymmetric cointegration and dynamic multiplier in an ARDL framework. In Festschrift in honor of Peter Schmidt: Econometric Methods and Applications, Eds. Horrace W.C. and Sickles R.C, Eds; Springer Science and Business Media, New York, 2014; pp.281–314; ISBN: 1489980075.
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy