Correlation analysis of physical fitness and retinal microvasculature by OCT angiography in healthy adults
Autoři:
Pieter Nelis aff001; Boris Schmitz aff002; Andreas Klose aff003; Florian Rolfes aff002; Maged Alnawaiseh aff001; Michael Krüger aff003; Nicole Eter aff001; Stefan-Martin Brand aff002; Florian Alten aff001
Působiště autorů:
Department of Ophthalmology, University of Muenster Medical Center, Muenster, Germany
aff001; Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
aff002; Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0225769
Souhrn
Optical coherence tomography angiography (OCT-A) represents the most recent modality in retinal imaging for non-invasive and depth-selective visualization of blood flow in retinal vessels. With regard to quantitative OCTA measurements for early detection of subclinical alterations, it is of great interest, which intra- and extra-ocular factors affect the results of OCTA measurements. Here, we performed OCTA imaging of the central retina in 65 eyes of 65 young healthy female and male participants and evaluated individual physical fitness levels by standard lactate diagnostic using an incremental maximal performance running test. The main finding was that OCTA measurements of the foveal avascular zone (FAZ) area were associated with physical fitness. Using multivariate regression analysis, we found that running speed at the individual lactate threshold, a marker strongly associated with aerobic performance capacity, significantly contributed to differences in FAZ area (β = 0.111, p = 0.032). The data indicates that smaller FAZ areas are likely observed in individuals with higher aerobic exercise capacity. Our findings are also of interest with respect to the potential use of retinal OCTA imaging to detect exercise-induced microvascular adaptations in future studies.
Klíčová slova:
Angiography – Blood flow – Exercise – Eyes – Physical activity – Physical fitness – Running – Tomography
Zdroje
1. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi: 10.1016/j.preteyeres.2017.11.003 29229445
2. Jia Y, Bailey ST, Hwang TS, Mcclintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci. 2015;112(18):E2395–402. doi: 10.1073/pnas.1500185112 25897021
3. Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, et al. OCT-Angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep. 2018;8(1):8148. doi: 10.1038/s41598-018-26475-5 29802397
4. Yang J, Su J, Wang J, Men S, Jia Y, Huang D, et al. Hematocrit dependence of flow signal in optical coherence tomography angiography. Biomed Opt Express. 2017;8(2):776–789. doi: 10.1364/BOE.8.000776 28270984
5. Holló G. Influence of Large Intraocular Pressure Reduction on Peripapillary OCT Vessel Density in Ocular Hypertensive and Glaucoma Eyes. J Glaucoma. 2017;26(1):e7–e10. doi: 10.1097/IJG.0000000000000527 27571444
6. Pechauer AD, Jia Y, Liu L, Gao SS, Jiang C, Huang D. Optical Coherence Tomography Angiography of Peripapillary Retinal Blood Flow Response to Hyperoxia. Invest Ophthalmol Vis Sci. 2015;56(5):3287–91. doi: 10.1167/iovs.15-16655 26024111
7. Casiglia E, Bongiovì S, Paleari CD, Petucco S, Boni M, Colangeli G, et al. Haemodynamic effects of coffee and caffeine in normal volunteers: a placebo-controlled clinical study. J Intern Med. 1991;229(6):501–4. doi: 10.1111/j.1365-2796.1991.tb00385.x 2045756
8. Okuno T. Effect of Caffeine on Microcirculation of Human Ocular Fundus. Jpn J Ophthalmol. 2001;45(6):677–8.
9. Karti O, Zengin MO, Kerci SG, Ayhan Z, Kusbeci T. Acute Effect Of Caffeine On Macular Microcirculation In Healthy Subjects. Retina. 2019;39(5):964–971. doi: 10.1097/IAE.0000000000002058 29401177
10. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N. Short-Term Effects Of Exercise On Optic Nerve And Macular Perfusion Measured By Optical Coherence Tomography Angiography. Retina. 2017;37(9):1642–6. doi: 10.1097/IAE.0000000000001419 27941530
11. Schmitz B, Nelis P, Rolfes F, Alnawaiseh M, Klose A, Krüger M, et al. Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis. 2018;274:8–15. doi: 10.1016/j.atherosclerosis.2018.04.028 29747089
12. Linderman R, Salmon AE, Strampe M, Russillo M, Khan J, Carroll J. Assessing the Accuracy of Foveal Avascular Zone Measurements Using Optical Coherence Tomography Angiography: Segmentation and Scaling. Transl Vis Sci Technol. 2017;6(3):16. doi: 10.1167/tvst.6.3.16 28616362
13. Touzeau O, Costantini E, Gaujoux T, Borderie V, Laroche L. [Correlation between refraction and ocular biometry]. J Fr Ophtalmol. 2010;33(9):659–69. doi: 10.1016/j.jfo.2010.09.007 21067845
14. Logan NS, Davies LN, Mallen EAH, Gilmartin B. Ametropia and Ocular Biometry in a U.K. University Student Population. Optom Vis Sci. 2005;82(4):261–6. doi: 10.1097/01.opx.0000159358.71125.95 15829853
15. Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, Klose A, Brand SM. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c. Front Physiol. 2018;9:395. doi: 10.3389/fphys.2018.00395 29719514
16. Léger L & Boucher R. An indirect continuous running multistage field test: the Université de Montréal track test. Can J Appl Sport Sci. 1980;5:77–84. 7389053
17. Schmitz B, Klose A, Schelleckes K, et al. Yo-Yo IR1 vs incremental continuous running test for prediction of 3000m performance. J Phys Fit Sports Med. 2017;57:1391–1398.
18. Dickhuth H-H, Yin L, Niess A, Röcker K, Mayer F, Heitkamp H-C, et al. Ventilatory, Lactate-Derived and Catecholamine Thresholds During Incremental Treadmill Running: Relationship and Reproducibility. Int J Sports Med. 1999;20(02):122–7.
19. Roecker K, Schotte O, Niess AM, Horstmann T, Dickhuth H-H. Predicting competition performance in long-distance running by means of a treadmill test. Med Sci Sports Exerc. 1998;30(10):1552–7. doi: 10.1097/00005768-199810000-00014 9789858
20. Schmitz B, Schelleckes K, Nedele J, Thorwesten L, Klose A, Lenders M, et al. Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels. Front Physiol. 2017;8.349. doi: 10.3389/fphys.2017.00349 28611681
21. Baek SU, Kim YK, Ha A et al. Diurnal change of retinal vessel density and mean ocular perfusion pressure in patients with open-angle glaucoma. PLoS One. 2019;14(4):e0215684. doi: 10.1371/journal.pone.0215684 31026291
22. Lauermann JL, Treder M, Heiduschka P, Clemens CR, Eter N, Alten F. Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(8):1535–42. doi: 10.1007/s00417-017-3684-z 28474129
23. Lumbroso B, Rispoli M, Savastano M. Chapter-05 Clinical Applications of OCT SSADA Angiography in Everyday Clinical Practice. Clinical OCT Angiography Atlas. 2015;20–31.
24. Enders C, Lang GE, Dreyhaupt J, Loidl M, Lang GK, Werner JU. Quantity and quality of image artifacts in optical coherence tomography angiography. Plos One. 2019;14(1):e0210505. doi: 10.1371/journal.pone.0210505 30682050
25. Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, et al. Normative Data for Vascular Density in Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT211–23 doi: 10.1167/iovs.15-18793 27409475
26. Alten F, Heiduschka P, Clemens CR, Eter N. Exploring choriocapillaris under reticular pseudodrusen using OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2016;254(11):2165–73. doi: 10.1007/s00417-016-3375-1 27193430
27. Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch's membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 1994;35:2857–2864. 8188481
28. Sampson DM, Gong P, An D, Menghini M, Hansen A, Mackey DA, et al. Axial Length Variation Impacts on Superficial Retinal Vessel Density and Foveal Avascular Zone Area Measurements Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065–3072. doi: 10.1167/iovs.17-21551 28622398
29. Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA. Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol. 1998;82(6):643–9. doi: 10.1136/bjo.82.6.643 9797665
30. Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal Capillary Density and Foveal Avascular Zone Area Are Age-Dependent: Quantitative Analysis Using Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–5787. doi: 10.1167/iovs.16-20045 27792812
31. Dorner GT, Garhofer G, Kiss B, Polska E, Polak K, Riva CE, et al. Nitric oxide regulates retinal vascular tone in humans. Am J Physiol Heart Circ Physiol. 2003;285(2):H631–6. doi: 10.1152/ajpheart.00111.2003 12750062
32. Haefliger IO, Meyer P, Flammer J, Lüscher TF. The vascular endothelium as a regulator of the ocular circulation: A new concept in ophthalmology? Surv Ophthalmol. 1994;39(2):123–32. doi: 10.1016/0039-6257(94)90157-0 7801220
33. Hemminki V, Laakso J, Kähönen M, Turjanmaa V, Uusitalo H, Lehtimäki T, et al. Plasma asymmetric dimethylarginine and retinal vessel diameters in middle-aged men. Metabolism. 2007;56(10):1305–10. doi: 10.1016/j.metabol.2007.05.012 17884437
34. Hanssen H, Nickel T, Drexel V, Hertel G, Emslander I, Sisic Z, et al. Exercise-induced alterations of retinal vessel diameters and cardiovascular risk reduction in obesity. Atherosclerosis. 2011;216(2):433–9. doi: 10.1016/j.atherosclerosis.2011.02.009 21392768
35. Cole ED, Moult EM, Dang S, Choi W, Ploner SB, Lee B, et al. The Definition, Rationale, and Effects of Thresholding in OCT Angiography. Ophthalmology Retina. 2017;1(5):435–47. doi: 10.1016/j.oret.2017.01.019 29034359
36. Trachsler S, Baston AE, Menke M. Intra- and Interdevice Deviation of Optical Coherence Tomography Angiography. Klin Monbl Augenheilkd. 2019 Mar 27. doi: 10.1055/a-0747-5333 [Epub ahead of print] 30919402
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy