Length of gestation and birth weight are associated with indices of combined kidney biomarkers in early childhood
Autoři:
Yuri Levin-Schwartz aff001; Paul Curtin aff001; Katherine Svensson aff001; Nicolas F. Fernandez aff002; Seunghee Kim-Schulze aff002; Gleicy M. Hair aff001; Daniel Flores aff004; Ivan Pantic aff005; Marcela Tamayo-Ortiz aff005; María Luisa Pizano-Zárate aff008; Chris Gennings aff001; Lisa M. Satlin aff004; Andrea A. Baccarelli aff009; Martha M. Téllez-Rojo aff005; Robert O. Wright aff001; Alison P. Sanders aff001
Působiště autorů:
Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
aff001; Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
aff002; Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
aff003; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
aff004; Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
aff005; Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
aff006; National Council of Science and Technology, Mexico City, Mexico
aff007; Division of Community Interventions Research, National Institute of Perinatology, Mexico City, Mexico
aff008; Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America
aff009
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0227219
Souhrn
Infants born prematurely or with low birth weights are more susceptible to kidney dysfunction throughout their lives. Multiple proteins measured in urine are noninvasive biomarkers of subclinical kidney damage, but few studies have examined the joint effects of multiple biomarkers. We conducted an exploratory study of 103 children in the Programing Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) longitudinal birth cohort, and measured nine proteins selected a priori in banked spot urine samples collected at ages 4–6. The goal of our study was to explore the combined effects of kidney damage biomarkers previously associated with birth outcomes. To do this, we generated kidney biomarker indices using weighted quantile sum regression and assessed associations with length of gestation or birth weight. A decile increase in each kidney biomarker index was associated with 2-day shorter gestations (β = -2.0, 95% CI: -3.2, -0.9) and 59-gram lower birth weights (β = -58.5, 95% CI: -98.3, -18.7), respectively. Weights highlighting the contributions showed neutrophil gelatinase-associated lipocalin (NGAL) (60%) and osteopontin (19%) contributed most to the index derived for gestational age. NGAL (66%) and beta-2-microglobulin (10%) contributed most to the index derived for birth weight. Joint analyses of multiple kidney biomarkers can provide integrated measures of kidney dysfunction and improved statistical assessments compared to biomarkers assessed individually. Additionally, shorter gestations and lower birth weights may contribute to subclinical kidney damage measurable in childhood.
Klíčová slova:
Albumins – Biomarkers – Birth weight – Creatinine – Infants – Kidneys – Preterm birth – Urine
Zdroje
1. Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, et al. Development of the human fetal kidney from mid to late gestation in male and female infants. EBioMedicine. 2018;27:275–83. doi: 10.1016/j.ebiom.2017.12.016 29329932
2. Askenazi DJ, Koralkar R, Levitan EB, Goldstein SL, Devarajan P, Khandrika S, et al. Baseline values of candidate urine acute kidney injury biomarkers vary by gestational age in premature infants. Pediatric Research. 2011;70(3):302–6. doi: 10.1203/PDR.0b013e3182275164 21646940
3. Ladeiras R, Flor-de-Lima F, Soares H, Oliveira B, Guimaraes H. Acute kidney injury in preterm neonates with ≤ 30 weeks of gestational age and its risk factors. Minerva Pediatrica. 2018.
4. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019;365:l1346. doi: 10.1136/bmj.l1346 31043374
5. Askenazi DJ, Ambalavanan N, Goldstein SL. Acute kidney injury in critically ill newborns: what do we know? What do we need to learn? Pediatric Nephrology. 2009;24(2):265–74. doi: 10.1007/s00467-008-1060-2 19082634
6. Edelstein CL. Biomarkers in acute kidney injury. Biomarkers of Kidney Disease (Second Edition): Elsevier; 2017. p. 241–315.
7. Libório AB, Branco KMPC, Torres de Melo Bezerra C. Acute kidney injury in neonates: from urine output to new biomarkers. BioMed Research International. 2014;2014:1–8.
8. Shihabi ZK, Konen JC, O'Connor ML. Albuminuria vs urinary total protein for detecting chronic renal disorders. Clin Chem. 1991;37(5):621–4. 2032314
9. Zeng X, Hossain D, Bostwick DG, Herrera GA, Zhang PL. Urinary beta2-Microglobulin Is a Good Indicator of Proximal Tubule Injury: A Correlative Study with Renal Biopsies. J Biomark. 2014;2014:492838. doi: 10.1155/2014/492838 26317034
10. Zhang A, Huang S. Progress in pathogenesis of proteinuria. Int J Nephrol. 2012;2012:314251. doi: 10.1155/2012/314251 22693670
11. Schmidt-Ott KM, Mori K, Kalandadze A, Li JY, Paragas N, Nicholas T, et al. Neutrophil gelatinase-associated lipocalin-mediated iron traffic in kidney epithelia. Curr Opin Nephrol Hypertens. 2006;15(4):442–9. doi: 10.1097/01.mnh.0000232886.81142.58 16775460
12. Xie Y, Sakatsume M, Nishi S, Narita I, Arakawa M, Gejyo F. Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int. 2001;60(5):1645–57. doi: 10.1046/j.1523-1755.2001.00032.x 11703581
13. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–63. doi: 10.1152/ajprenal.00285.2002 14600030
14. Dvergsten J, Manivel JC, Correa-Rotter R, Rosenberg ME. Expression of clusterin in human renal diseases. Kidney Int. 1994;45(3):828–35. doi: 10.1038/ki.1994.109 8196285
15. Yamanari T, Sugiyama H, Tanaka K, Morinaga H, Kitagawa M, Onishi A, et al. Urine Trefoil Factors as Prognostic Biomarkers in Chronic Kidney Disease. BioMed research international. 2018;2018:1–11.
16. Aisa MC, Cappuccini B, Barbati A, Orlacchio A, Baglioni M, Di Renzo GC. Biochemical parameters of renal impairment/injury and surrogate markers of nephron number in intrauterine growth-restricted and preterm neonates at 30–40 days of postnatal corrected age. Pediatric Nephrology. 2016;31(12):2277–87. doi: 10.1007/s00467-016-3484-4 27557556
17. Tsuboi N, Kanzaki G, Koike K, Kawamura T, Ogura M, Yokoo T. Clinicopathological assessment of the nephron number. Clin Kidney J. 2014;7(2):107–14. doi: 10.1093/ckj/sfu018 25852857
18. Askenazi DJ, Koralkar R, Patil N, Halloran B, Ambalavanan N, Griffin R. Acute kidney injury urine biomarkers in very low-birth-weight infants. Clinical Journal of the American Society of Nephrology. 2016;11(9):1527–35. doi: 10.2215/CJN.13381215 27471253
19. Greenberg JH, Coca S, Parikh CR. Long-term risk of chronic kidney disease and mortality in children after acute kidney injury: a systematic review. BMC Nephrology. 2014;15(1):184–.
20. Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463–93. doi: 10.1146/annurev.pharmtox.48.113006.094615 17937594
21. Ciccia E, Devarajan P. Pediatric acute kidney injury: prevalence, impact and management challenges. International Journal of Nephrology and Renovascular Disease. 2017;10:77–84. doi: 10.2147/IJNRD.S103785 28435306
22. DeFreitas MJ, Seeherunvong W, Katsoufis CP, RamachandraRao S, Duara S, Yasin S, et al. Longitudinal patterns of urine biomarkers in infants across gestational ages. Pediatric Nephrology. 2016;31(7):1179–88. doi: 10.1007/s00467-016-3327-3 26862052
23. Lavery AP, Meinzen-Derr JK, Anderson E, Ma Q, Bennett MR, Devarajan P, et al. Urinary NGAL in premature infants. Pediatric Research. 2008;64(4):423–8. doi: 10.1203/PDR.0b013e318181b3b2 18552711
24. Saeidi B, Koralkar R, Griffin RL, Halloran B, Ambalavanan N, Askenazi DJ. Impact of gestational age, sex, and postnatal age on urine biomarkers in premature neonates. Pediatric Nephrology. 2015;30(11):2037–44. doi: 10.1007/s00467-015-3129-z 26001700
25. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. American Journal of Kidney Diseases. 2009;54(2):248–61. doi: 10.1053/j.ajkd.2008.12.042 19339091
26. Zaffanello M, Brugnara M, Bruno C, Franchi B, Talamini G, Guidi G, et al. Renal function and volume of infants born with a very low birth-weight: a preliminary cross-sectional study. Acta Paediatrica. 2010;99(8):1192–8. doi: 10.1111/j.1651-2227.2010.01799.x 20337778
27. Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. Journal of Agricultural, Biological, and Environmental Statistics. 2014;20(1):100–20. doi: 10.1007/s13253-014-0180-3 30505142
28. Burris HH, Braun JM, Byun H-M, Tarantini L, Mercado A, Wright RJ, et al. Association between birth weight and DNA methylation of IGF2, glucocorticoid receptor and repetitive elements LINE-1 and Alu. Epigenomics. 2013;5(3):271–81. doi: 10.2217/epi.13.24 23750643
29. de Onis M, Lobstein T. Defining obesity risk status in the general childhood population: which cut-offs should we use? Int J Pediatr Obes. 2010;5(6):458–60. doi: 10.3109/17477161003615583 20233144
30. Sanders AP, Burris HH, Just AC, Motta V, Svensson K, Mercado-Garcia A, et al. microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics. 2015;10(3):221–8. doi: 10.1080/15592294.2015.1006498 25611922
31. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. doi: 10.1186/1471-2431-13-59 23601190
32. de Onis M, Garza C, Victora CG, Onyango AW, Frongillo EA, Martines J. The WHO Multicentre Growth Reference Study: planning, study design, and methodology. Food Nutr Bull. 2004;25(1 Suppl):S15–26.
33. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34(3):571–90. doi: 10.1016/s0031-3955(16)36251-4 3588043
34. Izzedine H, Perazella MA. Anticancer drug-induced acute kidney injury. Kidney International Reports. 2017;2(4):504–14. doi: 10.1016/j.ekir.2017.02.008 29318217
35. Brunst KJ, Sanchez Guerra M, Gennings C, Hacker M, Jara C, Bosquet Enlow M, et al. Maternal Lifetime Stress and Prenatal Psychological Functioning and Decreased Placental Mitochondrial DNA Copy Number in the PRISM Study. Am J Epidemiol. 2017;186(11):1227–36. doi: 10.1093/aje/kwx183 28595325
36. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200. doi: 10.1289/ehp.7337 15687057
37. O'Brien KM, Upson K, Buckley JP. Lipid and Creatinine Adjustment to Evaluate Health Effects of Environmental Exposures. Curr Environ Health Rep. 2017;4(1):44–50. doi: 10.1007/s40572-017-0122-7 28097619
38. O'Brien KM, Upson K, Cook NR, Weinberg CR. Environmental Chemicals in Urine and Blood: Improving Methods for Creatinine and Lipid Adjustment. Environ Health Perspect. 2016;124(2):220–7. doi: 10.1289/ehp.1509693 26219104
39. Henn BC, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, et al. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environmental Research. 2018;161:588–98. doi: 10.1016/j.envres.2017.12.003 29247915
40. Groesbeck D, Kottgen A, Parekh R, Selvin E, Schwartz GJ, Coresh J, et al. Age, gender, and race effects on cystatin C levels in US adolescents. Clin J Am Soc Nephrol. 2008;3(6):1777–85. doi: 10.2215/CJN.00840208 18815241
41. Jones CA, Francis ME, Eberhardt MS, Chavers B, Coresh J, Engelgau M, et al. Microalbuminuria in the US population: third National Health and Nutrition Examination Survey. Am J Kidney Dis. 2002;39(3):445–59. doi: 10.1053/ajkd.2002.31388 11877563
42. Hibi Y, Uemura O, Nagai T, Yamakawa S, Yamasaki Y, Yamamoto M, et al. The ratios of urinary beta2-microglobulin and NAG to creatinine vary with age in children. Pediatr Int. 2015;57(1):79–84. doi: 10.1111/ped.12470 25142083
43. McWilliam SJ, Antoine DJ, Sabbisetti V, Pearce RE, Jorgensen AL, Lin Y, et al. Reference intervals for urinary renal injury biomarkers KIM-1 and NGAL in healthy children. Biomark Med. 2014;8(10):1189–97. doi: 10.2217/bmm.14.36 24661102
44. Savory DJ. Reference ranges for serum creatinine in infants, children and adolescents. Ann Clin Biochem. 1990;27 (Pt 2):99–101.
45. Schwartz GJ, Haycock GB, Spitzer A. Plasma creatinine and urea concentration in children: normal values for age and sex. J Pediatr. 1976;88(5):828–30. doi: 10.1016/s0022-3476(76)81125-0 1271147
46. Delanaye P, Schaeffner E, Ebert N, Cavalier E, Mariat C, Krzesinski JM, et al. Normal reference values for glomerular filtration rate: what do we really know? Nephrol Dial Transplant. 2012;27(7):2664–72. doi: 10.1093/ndt/gfs265 22802582
47. Pottel H, Hoste L, Delanaye P. Abnormal glomerular filtration rate in children, adolescents and young adults starts below 75 mL/min/1.73 m(2). Pediatr Nephrol. 2015;30(5):821–8. doi: 10.1007/s00467-014-3002-5 25403744
48. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. The Lancet. 2005;365(9466):1231–8.
49. Barton KT, Kakajiwala A, Dietzen DJ, Goss CW, Gu H, Dharnidharka VR. Using the newer Kidney Disease: Improving Global Outcomes criteria, beta-2-microglobulin levels associate with severity of acute kidney injury. Clinical Kidney Journal. 2018;11(6):797–802. doi: 10.1093/ckj/sfy056 30524714
50. Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015;10(1):147–55. doi: 10.2215/CJN.12191213 25092601
51. Beitland S, Nakstad ER, Berg JP, Troseid AS, Brusletto BS, Brunborg C, et al. Urine beta-2-Microglobulin, Osteopontin, and Trefoil Factor 3 May Early Predict Acute Kidney Injury and Outcome after Cardiac Arrest. Crit Care Res Pract. 2019;2019:4384796. doi: 10.1155/2019/4384796 31205786
52. Krawczeski CD, Goldstein SL, Woo JG, Wang Y, Piyaphanee N, Ma Q, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301–9. doi: 10.1016/j.jacc.2011.08.017 22093507
53. Zheng J, Xiao Y, Yao Y, Xu G, Li C, Zhang Q, et al. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children. Pediatr Cardiol. 2013;34(4):880–6. doi: 10.1007/s00246-012-0563-6 23124320
54. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. Journal of the American Society of Nephrology. 2003;14(10):2534–43. doi: 10.1097/01.asn.0000088027.54400.c6 14514731
55. Stritzke A, Thomas S, Amin H, Fusch C, Lodha A. Renal consequences of preterm birth. Mol Cell Pediatr. 2017;4(1):2. doi: 10.1186/s40348-016-0068-0 28101838
56. Matsumura K, Matsuzaki Y, Hida M, Ikeda K, Awazu M. Tubular dysfunction in extremely low birth weight survivors. Clin Exp Nephrol. 2018.
57. Schmidt IM, Chellakooty M, Boisen KA, Damgaard IN, Mau Kai C, Olgaard K, et al. Impaired kidney growth in low-birth-weight children: distinct effects of maturity and weight for gestational age. Kidney Int. 2005;68(2):731–40. doi: 10.1111/j.1523-1755.2005.00451.x 16014050
58. Greenberg JH, Parikh CR. Biomarkers for Diagnosis and Prognosis of AKI in Children: One Size Does Not Fit All. Clin J Am Soc Nephrol. 2017;12(9):1551–7. doi: 10.2215/CJN.12851216 28667085
59. Ling C, Liew Z, von Ehrenstein OS, Heck JE, Park AS, Cui X, et al. Prenatal Exposure to Ambient Pesticides and Preterm Birth and Term Low Birthweight in Agricultural Regions of California. Toxics. 2018;6(3).
60. Han Z, Mulla S, Beyene J, Liao G, McDonald SD, Knowledge Synthesis G. Maternal underweight and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. Int J Epidemiol. 2011;40(1):65–101. doi: 10.1093/ije/dyq195 21097954
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy