Force-stabilizing synergies can be retained by coordinating sensory-blocked and sensory-intact digits
Autoři:
Wei Zhang aff001; Sasha Reschechtko aff002; Barry Hahn aff003; Cynthia Benson aff003; Elias Youssef aff003
Působiště autorů:
Department of Physical Therapy, City University of New York / College of Staten Island, Staten Island, New York, United States of America
aff001; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
aff002; Emergency Medicine, Staten Island University Hospital, Staten Island, New York, United States of America
aff003
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226596
Souhrn
The present study examined the effects of selective digital deafferentation on the multi-finger synergies as a function of total force requirement and the number of digits involved in isometric pressing. 12 healthy adults participated in maximal and sub-maximal isometric pressing tasks with or without digital anesthesia to selective digits from the right hand. Our results indicate that selective anesthesia paradigm induces changes in both anesthetized (local) and non-anesthetized (non-local) digits’ performance, including: (1) decreased maximal force abilities in both local and non-local digits; (2) reduced force share during multi-finger tasks from non-local but not local digits; (3) decreased force error-making; and (4) marginally increased motor synergies. These results reinforce the contribution of somatosensory feedback in the process of maximal voluntary contraction force, motor performance, and indicate that somatosensation may play a role in optimizing secondary goals during isometric force production rather than ensuring task performance.
Klíčová slova:
Anesthesia – Central nervous system – Fingers – Motor system – Sensory perception – Synergy testing – Vision
Zdroje
1. Bernstein N. A. The co-ordination and regulation of movements. Oxford: Pergamon Press; 1967.
2. Goodman SR, Shim JK, Zatsiorsky VM, Latash ML. Motor variability within a multi-effector system: experimental and analytical studies of multi-finger production of quick force pulses. Experimental Brain Research 2005;163(1):75–85. doi: 10.1007/s00221-004-2147-z 15690155
3. Latash ML, Li Z, Zatsiorsky VM. A principle of error compensation studied within a task of force production by a redundant set of fingers. Experimental brain research 1998;122(2):131–138. doi: 10.1007/s002210050500 9776511
4. Latash ML, Scholz JF, Danion F, Schöner G. Structure of motor variability in marginally redundant multifinger force production tasks. Experimental brain research 2001;141(2):153–165. doi: 10.1007/s002210100861 11713627
5. Li Z, Latash ML, Zatsiorsky VM. Force sharing among fingers as a model of the redundancy problem. Experimental brain research 1998;119(3):276–286. doi: 10.1007/s002210050343 9551828
6. Latash ML, Scholz JP, Schöner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 2002;30(1):26–31. doi: 10.1097/00003677-200201000-00006 11800496
7. Latash ML, Scholz JP, Schöner G. Toward a new theory of motor synergies. Motor Control 2007;11(3):276–308. doi: 10.1123/mcj.11.3.276 17715460
8. Scholz JP, Schöner G. The uncontrolled manifold concept: identifying control variables for a functional task. Experimental brain research 1999;126(3):289–306. doi: 10.1007/s002210050738 10382616
9. Schöner G, Scholz JP. Analyzing variance in multi-degree-of-freedom movements: uncovering structure versus extracting correlations. Motor Control 2007;11(3):259–275. doi: 10.1123/mcj.11.3.259 17715459
10. Latash ML, Anson JG. Synergies in health and disease: relations to adaptive changes in motor coordination. Phys Ther 2006;86(8):1151–1160. 16879049
11. Zhang W, Zatsiorsky VM, Latash ML. Finger synergies during multi-finger cyclic production of moment of force. Experimental brain research 2007;177(2):243–254. doi: 10.1007/s00221-006-0663-8 16944107
12. Latash ML. Stages in learning motor synergies: A view based on the equilibrium-point hypothesis. Human movement science 2010;29(5):642–654. doi: 10.1016/j.humov.2009.11.002 20060610
13. Zhang W, Zatsiorsky VM, Latash ML. Accurate production of time-varying patterns of the moment of force in multi-finger tasks. Experimental brain research 2006;175(1):68. doi: 10.1007/s00221-006-0521-8 16779549
14. Carteron A, McPartlan K, Gioeli C, Reid E, Turturro M, Hahn B, et al. Temporary nerve block at selected digits revealed hand motor deficits in grasping tasks. Frontiers in Human Neuroscience 2016;10:596. doi: 10.3389/fnhum.2016.00596 27932964
15. Ranganathan R, Newell KM. Motor synergies: feedback and error compensation within and between trials. Experimental brain research 2008;186(4):561–570. doi: 10.1007/s00221-007-1259-7 18183373
16. Arpinar-Avsar P, Park J, Zatsiorsky VM, Latash ML. Effects of muscle vibration on multi-finger interaction and coordination. Experimental brain research 2013;229(1):103–111. doi: 10.1007/s00221-013-3597-y 23736524
17. Koh K, Kwon HJ, Yoon BC, Cho Y, Shin J, Hahn J, et al. The role of tactile sensation in online and offline hierarchical control of multi-finger force synergy. Experimental brain research 2015;233(9):2539–2548. doi: 10.1007/s00221-015-4325-6 26019011
18. Goodman SR, Latash ML. Feed-forward control of a redundant motor system. Biol Cybern 2006;95(3):271–280. doi: 10.1007/s00422-006-0086-4 16838148
19. Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci 2002;5(11):1226. doi: 10.1038/nn963 12404008
20. Diedrichsen J, Shadmehr R, Ivry RB. The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci (Regul Ed) 2010;14(1):31–39.
21. Harris CM, Wolpert DM. Signal-dependent noise determines motor planning. Nature 1998;394(6695):780. doi: 10.1038/29528 9723616
22. Jones KE, Hamilton, Antonia F de C, Wolpert DM. Sources of signal-dependent noise during isometric force production. J Neurophysiol 2002;88(3):1533–1544. doi: 10.1152/jn.2002.88.3.1533 12205173
23. Newell KM, Carlton LG. Force variability in isometric responses. Journal of Experimental Psychology: Human Perception and Performance 1988;14(1):37. 2964505
24. Slifkin AB, Newell KM. Noise, information transmission, and force variability. Journal of Experimental Psychology: Human Perception and Performance 1999;25(3):837. doi: 10.1037//0096-1523.25.3.837 10385989
25. Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT Jr. Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev 1979;86(5):415.
26. Todorov E. Cosine tuning minimizes motor errors. Neural Comput 2002;14(6):1233–1260. doi: 10.1162/089976602753712918 12020444
27. Johansson RS, Häger C, Riso R. Somatosensory control of precision grip during unpredictable pulling loads. Experimental brain research 1992;89(1):192–203. doi: 10.1007/bf00229016 1601097
28. Monzée J, Lamarre Y, Smith AM. The effects of digital anesthesia on force control using a precision grip. J Neurophysiol 2003;89(2):672–683. doi: 10.1152/jn.00434.2001 12574445
29. Witney AG, Wing A, Thonnard J, Smith AM. The cutaneous contribution to adaptive precision grip. Trends Neurosci 2004;27(10):637–643. doi: 10.1016/j.tins.2004.08.006 15374677
30. Li Z, Harkness DA, Goitz RJ. Thumb force deficit after lower median nerve block. Journal of neuroengineering and rehabilitation 2004;1(1):3. doi: 10.1186/1743-0003-1-3 15679912
31. Dun S, Kaufmann RA, Li Z. Lower median nerve block impairs precision grip. Journal of Electromyography and Kinesiology 2007;17(3):348–354. doi: 10.1016/j.jelekin.2006.02.002 16616519
32. Reschechtko S, Wang H, Alendry K, Benson C, Hahn B, Zhang W. Effect of Sensory Deprivation on Maximal Force Abilities from Local to Non-local Digits. J Mot Behav 2019:1–13.
33. Li K, Li Z. Cross recurrence quantification analysis of precision grip following peripheral median nerve block. Journal of neuroengineering and rehabilitation 2013;10(1):28.
34. Shim JK, Karol S, Kim Y, Seo NJ, Kim YH, Kim Y, et al. Tactile feedback plays a critical role in maximum finger force production. J Biomech 2012;45(3):415–420. doi: 10.1016/j.jbiomech.2011.12.001 22222494
35. Kim Y, Shim JK, Hong Y, Lee S, Yoon BC. Cutaneous sensory feedback plays a critical role in agonist–antagonist co-activation. Experimental brain research 2013;229(2):149–156. doi: 10.1007/s00221-013-3601-6 23836110
36. Augurelle A, Smith AM, Lejeune T, Thonnard J. Importance of cutaneous feedback in maintaining a secure grip during manipulation of hand-held objects. J Neurophysiol 2003;89(2):665–671. doi: 10.1152/jn.00249.2002 12574444
37. Gissen AJ, Covino BG, Gregus J. Differential sensitivity of fast and slow fibers in mammalian nerve. III. Effect of etidocaine and bupivacaine on fast/slow fibers. Anesth Analg 1982;61(7):570–575. 6283948
38. Kang N, Shinohara M, Zatsiorsky VM, Latash ML. Learning multi-finger synergies: an uncontrolled manifold analysis. Experimental Brain Research 2004;157(3):336–350. doi: 10.1007/s00221-004-1850-0 15042264
39. Enoka RM, Fuglevand AJ. Motor unit physiology: some unresolved issues. Muscle Nerve 2001;24(1):4–17. doi: 10.1002/1097-4598(200101)24:1<4::aid-mus13>3.0.co;2-f 11150961
40. Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res 2011;1409:42–61. doi: 10.1016/j.brainres.2011.06.011 21762884
41. Duchateau J, Baudry S. Maximal discharge rate of motor units determines the maximal rate of force development during ballistic contractions in human. Frontiers in human neuroscience 2014;8:234. doi: 10.3389/fnhum.2014.00234 24795599
42. Kim Y., Shim J. K., Hong Y. K., Lee S. H., & Yoon B. C. Cutaneous sensory feedback plays a critical role in agonist-antagonist co-activation. Exp Brain Res2013; 229(2), 149–156.
43. Zhang W, Johnston JA, Ross MA, Sanniec K, Gleason EA, Dueck AC, et al. Effects of carpal tunnel syndrome on dexterous manipulation are grip type-dependent. PloS one 2013;8(1):e53751. doi: 10.1371/journal.pone.0053751 23326498
44. Todorov E. Optimality principles in sensorimotor control. Nat Neurosci 2004;7(9):907. doi: 10.1038/nn1309 15332089
45. Reschechtko S, Zatsiorsky VM, Latash ML. Stability of multifinger action in different state spaces. J Neurophysiol 2014; 112(12): 3207–3218.
46. Reschechtko S, Zatsiorsky VM, Latash ML. Task-specific stability of multifinger steady-state action. J Mot Behav 2015; 47:365–377 doi: 10.1080/00222895.2014.996281 25565327
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy