Experimental infection of lambs with tick-borne encephalitis virus and co-infection with Anaplasma phagocytophilum
Autoři:
Katrine M. Paulsen aff001; Erik G. Granquist aff002; Wenche Okstad aff003; Rose Vikse aff001; Karin Stiasny aff004; Åshild K. Andreassen aff001; Snorre Stuen aff003
Působiště autorů:
Department of Virology, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
aff001; Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
aff002; Section of Small Ruminant Research and Herd Health, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Sandnes, Norway
aff003; Center for Virology, Medical University of Vienna, Vienna, Austria
aff004
Vyšlo v časopise:
PLoS ONE 14(12)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0226836
Souhrn
Tick-borne encephalitis virus (TBEV) is a zoonotic pathogen which may cause tick-borne encephalitis (TBE) in humans and animals. More than 10,000 cases of TBE are reported annually in Europe and Asia. However, the knowledge on TBE in animals is limited. Co-infection with Anaplasma phagocytophilum and louping ill virus (LIV), a close relative to TBEV, in sheep has been found to cause more severe disease than single LIV or A. phagocytophilum infection. The aim of this study was to investigate TBEV infection and co-infection of TBEV and A. phagocytophilum in lambs. A total of 30 lambs, aged five to six months, were used. The experiment was divided into two. In part one, pre- and post-infection of TBEV and A. phagocytophilum was investigated (group 1 to 4), while in part two, co-infection of TBEV and A. phagocytophilum was investigated (group 5 and 6). Blood samples were drawn, and rectal temperature was measured daily. Lambs inoculated with TBEV displayed no clinical symptoms, but had a short or non-detectable viremia by reverse transcription real-time PCR. All lambs inoculated with TBEV developed neutralizing TBEV antibodies. Our study is in accordance with previous studies, and indicates that TBEV rarely causes symptomatic disease in ruminants. All lambs inoculated with A. phagocytophilum developed fever and clinical symptoms of tick-borne fever, and A. phagocytophilum was present in the blood samples of all infected lambs, shown by qPCR. Significantly higher mean TBEV titer was detected in the group co-infected with TBEV and A. phagocytophilum, compared to the groups pre- or post-infected with A. phagocytophilum. These results indicate that co-infection with TBEV and A. phagocytophilum in sheep stimulates an increased TBEV antibody response.
Klíčová slova:
Antibodies – Co-infections – Monocytes – Neutrophils – Polymerase chain reaction – Sheep – Tick-borne encephalitis – Viremia
Zdroje
1. Lindquist L, Vapalahti O. Tick-borne encephalitis. The Lancet. 2008;371(9627):1861–71. doi: 10.1016/s0140-6736(08)60800-4
2. Balogh Z, Ferenczi E, Szeles K, Stefanoff P, Gut W, Szomor KN, et al. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. Journal of virological methods. 2010;163(2):481–5. doi: 10.1016/j.jviromet.2009.10.003 19836419
3. Caini S, Szomor K, Ferenczi E, Szekelyne Gaspar A, Csohan A, Krisztalovics K, et al. Tick-borne encephalitis transmitted by unpasteurised cow milk in western Hungary, September to October 2011. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2012;17(12).
4. Gresikova M, Sekeyova M, Stupalova S, Necas S. Sheep milk-borne epidemic of tick-borne encephalitis in Slovakia. Intervirology. 1975;5(1–2):57–61. doi: 10.1159/000149880 1237478
5. Holzmann H, Aberle SW, Stiasny K, Werner P, Mischak A, Zainer B, et al. Tick-borne encephalitis from eating goat cheese in a mountain region of Austria. Emerging infectious diseases. 2009;15(10):1671–3. doi: 10.3201/eid1510.090743 19861072
6. Hudopisk N, Korva M, Janet E, Simetinger M, Grgic-Vitek M, Gubensek J, et al. Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012. Emerging infectious diseases. 2013;19(5):806–8. doi: 10.3201/eid1905.121442 23697658
7. Markovinovic L, Kosanovic Licina ML, Tesic V, Vojvodic D, Vladusic Lucic I, Kniewald T, et al. An outbreak of tick-borne encephalitis associated with raw goat milk and cheese consumption, Croatia, 2015. Infection. 2016;44(5):661–5. doi: 10.1007/s15010-016-0917-8 27364148
8. Paulsen KM, Stuen S, das Neves CG, Suhel F, Gurung D, Soleng A, et al. Tick-borne encephalitis virus in cows and unpasteurized cow milk from Norway. Zoonoses and public health. 2019;66(2):216–22. doi: 10.1111/zph.12554 30593734
9. Cisak E, Wojcik-Fatla A, Zajac V, Sroka J, Buczek A, Dutkiewicz J. Prevalence of tick-borne encephalitis virus (TBEV) in samples of raw milk taken randomly from cows, goats and sheep in eastern Poland. Annals of agricultural and environmental medicine: AAEM. 2010;17(2):283–6. 21186771
10. Kaiser R. Tick-borne encephalitis: Clinical findings and prognosis in adults. Wiener medizinische Wochenschrift (1946). 2012;162(11–12):239–43. doi: 10.1007/s10354-012-0105-0 22695809
11. Ruzek D, Avsic Zupanc T, Borde J, Chrdle A, Eyer L, Karganova G, et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014 30710567
12. Klimes J, Juricova Z, Literak I, Schanilec P, Trachta e Silva E. Prevalence of antibodies to tickborne encephalitis and West Nile flaviviruses and the clinical signs of tickborne encephalitis in dogs in the Czech Republic. The Veterinary record. 2001;148(1):17–20. doi: 10.1136/vr.148.1.17 11200400
13. Leschnik MW, Kirtz GC, Thalhammer JG. Tick-borne encephalitis (TBE) in dogs. International journal of medical microbiology: IJMM. 2002;291 Suppl 33:66–9.
14. Reiner B, Fischer A, Godde T, Muller W. Clinical diagnosis of canine tick-borne encephalitis (TBE): Contribution of cerebrospinal fluid analysis (CSF) and CSF antibody titers. Zentralblatt Fur Bakteriologie-International Journal of Medical Microbiology Virology Parasitology and Infectious Diseases. 1999;289(5–7):605–9. https://doi.org/10.1016/S0934-8840(99)80016-4
15. Klaus C, Horugel U, Hoffmann B, Beer M. Tick-borne encephalitis virus (TBEV) infection in horses: clinical and laboratory findings and epidemiological investigations. Veterinary microbiology. 2013;163(3–4):368–72. doi: 10.1016/j.vetmic.2012.12.041 23395291
16. Suss J, Gelpi E, Klaus C, Bagon A, Liebler-Tenorio EM, Budka H, et al. Tickborne encephalitis in naturally exposed monkey (Macaca sylvanus). Emerging infectious diseases. 2007;13(6):905–7. doi: 10.3201/eid1306.061173 17553233
17. Bohm B, Schade B, Bauer B, Hoffmann B, Hoffmann D, Ziegler U, et al. Tick-borne encephalitis in a naturally infected sheep. BMC veterinary research. 2017;13(1):267. doi: 10.1186/s12917-017-1192-3 28830430
18. Bago Z, Bauder B, Kolodziejek J, Nowotny N, Weissenbock H. Tickborne encephalitis in a mouflon (Ovis ammon musimon). The Veterinary record. 2002;150(7):218–20. doi: 10.1136/vr.150.7.218 11878442
19. Randolph SE. Transmission of tick-borne pathogens between co-feeding ticks: Milan Labuda's enduring paradigm. Ticks and tick-borne diseases. 2011;2(4):179–82. doi: 10.1016/j.ttbdis.2011.07.004 22108009
20. Jaenson TG, Hjertqvist M, Bergstrom T, Lundkvist A. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites & vectors. 2012;5:184. doi: 10.1186/1756-3305-5-184 22937961
21. Waldenstrom J, Lundkvist A, Falk KI, Garpmo U, Bergstrom S, Lindegren G, et al. Migrating birds and tickborne encephalitis virus. Emerging infectious diseases. 2007;13(8):1215–8. doi: 10.3201/eid1308.061416 17953095
22. Hasle G, Bjune G, Edvardsen E, Jakobsen C, Linnehol B, Roer JE, et al. Transport of ticks by migratory passerine birds to Norway. J Parasitol. 2009;95(6):1342–51. doi: 10.1645/GE-2146.1 19658452
23. Tonteri E, Jokelainen P, Matala J, Pusenius J, Vapalahti O. Serological evidence of tick-borne encephalitis virus infection in moose and deer in Finland: sentinels for virus circulation. Parasites & vectors. 2016;9:54. doi: 10.1186/s13071-016-1335-6 26825371
24. Randolph SE, Miklisova D, Lysy J, Rogers DJ, Labuda M. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999;118 (Pt 2):177–86. doi: 10.1017/s0031182098003643
25. Labuda M, Nuttall PA, Kozuch O, Eleckova E, Williams T, Zuffova E, et al. Non-viraemic transmission of tick-borne encephalitis virus: a mechanism for arbovirus survival in nature. Experientia. 1993;49(9):802–5. doi: 10.1007/bf01923553 8405306
26. Labuda M, Kozuch O, Zuffova E, Eleckova E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235(1):138–43. doi: 10.1006/viro.1997.8622 9300045
27. Foggie A. Studies on the infectious agent of tick-borne fever in sheep. The Journal of pathology and bacteriology. 1951;63(1):1–15. doi: 10.1002/path.1700630103 14832686
28. Foley JE, Foley P, Jecker M, Swift PK, Madigan JE. Granulocytic ehrlichiosis and tick infestation in mountain lions in California. Journal of wildlife diseases. 1999;35(4):703–9. doi: 10.7589/0090-3558-35.4.703 10574529
29. Stuen S, Bergström K. Serological Investigation of Granulocytic EhrlichiaInfection in Sheep in Norway. Acta veterinaria Scandinavica. 2001;42(3):331. doi: 10.1186/1751-0147-42-331 11887393
30. Tuomi J. Experimental studies on bovine tick-borne fever. 1. Clinical and haematological data, some properties of the causative agent, and homologous immunity. Acta pathologica et microbiologica Scandinavica. 1967;70(3):429–45. 5625578
31. Woldehiwet Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Veterinary journal (London, England: 1997). 2008;175(1):37–44. doi: 10.1016/j.tvjl.2006.11.019 17275372
32. Stuen S, Hardeng F, Larsen HJ. Resistance to tick-borne fever in young lambs. Research in veterinary science. 1992;52(2):211–6. doi: 10.1016/0034-5288(92)90012-q 1585079
33. Grova L, Olesen I, Steinshamn H, Stuen S. Prevalence of Anaplasma phagocytophilum infection and effect on lamb growth. Acta veterinaria Scandinavica. 2011;53:30. doi: 10.1186/1751-0147-53-30 21569524
34. Diuk-Wasser MA, Vannier E, Krause PJ. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends in parasitology. 2016;32(1):30–42. doi: 10.1016/j.pt.2015.09.008 26613664
35. Kjelland V, Paulsen KM, Rollum R, Jenkins A, Stuen S, Soleng A, et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks and tick-borne diseases. 2018;9(5):1098–102. doi: 10.1016/j.ttbdis.2018.04.005 29678403
36. Reid HW, Buxton D, Pow I, Brodie TA, Holmes PH, Urquhart GM. Response of sheep to experimental concurrent infection with tick-borne fever (Cytoecetes phagocytophila) and louping-ill virus. Research in veterinary science. 1986;41(1):56–62. 3764102
37. Thomas V, Anguita J, Barthold SW, Fikrig E. Coinfection with Borrelia burgdorferi and the agent of human granulocytic ehrlichiosis alters murine immune responses, pathogen burden, and severity of Lyme arthritis. Infection and immunity. 2001;69(5):3359–71. doi: 10.1128/IAI.69.5.3359-3371.2001 11292759
38. Gordon WS, Brownlee A, Wilson R, Macleod J. Studies In Louping-Ill. (An Encephalomyelitis of Sheep.). Journal of Comparative Pathology and Therapeutics. 1932;45:106–40. doi: 10.1016/s0368-1742(32)80008-1
39. Mansfield KL, Johnson N, Banyard AC, Nunez A, Baylis M, Solomon T, et al. Innate and adaptive immune responses to tick-borne flavivirus infection in sheep. Veterinary microbiology. 2016;185:20–8. doi: 10.1016/j.vetmic.2016.01.015 26931387
40. Stuen S, Bergstrom K, Petrovec M, Van de Pol I, Schouls LM. Differences in clinical manifestations and hematological and serological responses after experimental infection with genetic variants of Anaplasma phagocytophilum in sheep. Clinical and diagnostic laboratory immunology. 2003;10(4):692–5. doi: 10.1128/CDLI.10.4.692-695.2003 12853406
41. Andreassen A, Jore S, Cuber P, Dudman S, Tengs T, Isaksen K, et al. Prevalence of tick borne encephalitis virus in tick nymphs in relation to climatic factors on the southern coast of Norway. Parasites & vectors. 2012;5:177. doi: 10.1186/1756-3305-5-177 22913287
42. Stiasny K, Holzmann H, Heinz FX. Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine. 2009;27(50):7021–6. doi: 10.1016/j.vaccine.2009.09.069 19789092
43. Henningsson AJ, Hvidsten D, Kristiansen BE, Matussek A, Stuen S, Jenkins A. Detection of Anaplasma phagocytophilum in Ixodes ricinus ticks from Norway using a realtime PCR assay targeting the Anaplasma citrate synthase gene gltA. BMC microbiology. 2015;15:153. doi: 10.1186/s12866-015-0486-5 26231851
44. Naimi WA, Green RS, Cockburn CL, Carlyon JA. Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Tropical medicine and infectious disease. 2018;3(3). doi: 10.3390/tropicalmed3030078 30274474
45. Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaelsson J, Bjorkstrom NK, et al. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Frontiers in immunology. 2018;9:2174. doi: 10.3389/fimmu.2018.02174 30319632
46. Severo MS, Stephens KD, Kotsyfakis M, Pedra JH. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future microbiology. 2012;7(6):719–31. doi: 10.2217/fmb.12.45 22702526
47. Choi KS, Scorpio DG, Dumler JS. Anaplasma phagocytophilum ligation to toll-like receptor (TLR) 2, but not to TLR4, activates macrophages for nuclear factor-kappa B nuclear translocation. The Journal of infectious diseases. 2004;189(10):1921–5. doi: 10.1086/386284 15122530
48. Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Research. 2003;57(1–2):129–46. doi: 10.1016/s0166-3542(02)00206-1 12615309
49. Kohl I, Kozuch O, Eleckova E, Labuda M, Zaludko J. Family outbreak of alimentary tick-borne encephalitis in Slovakia associated with a natural focus of infection. European journal of epidemiology. 1996;12(4):373–5. doi: 10.1007/bf00145300 8891541
50. Rieger MA, Nubling M, Kaiser R, Tiller FW, Hofmann F. [Tick-borne encephalitis transmitted by raw milk—what is the significance of this route of infection? Studies in the epidemic region of South-West Germany]. Gesundheitswesen. 1998;60(6):348–56. 9697358
51. Kerbo N, Donchenko I, Kutsar K, Vasilenko V. Tickborne encephalitis outbreak in Estonia linked to raw goat milk, May-June 2005. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2005;10(6):E050623 2. doi: 10.2807/esw.10.25.02730-en 16783104
52. Kriz B, Benes C, Daniel M. Alimentary transmission of tick-borne encephalitis in the Czech Republic (1997–2008). Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne. 2009;58(2):98–103.
53. Balogh Z, Egyed L, Ferenczi E, Ban E, Szomor KN, Takacs M, et al. Experimental infection of goats with tick-borne encephalitis virus and the possibilities to prevent virus transmission by raw goat milk. Intervirology. 2012;55(3):194–200. doi: 10.1159/000324023 21325791
Článek vyšel v časopise
PLOS One
2019 Číslo 12
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells
- Oregano powder reduces Streptococcus and increases SCFA concentration in a mixed bacterial culture assay
- The characteristic of patulous eustachian tube patients diagnosed by the JOS diagnostic criteria
- Parametric CAD modeling for open source scientific hardware: Comparing OpenSCAD and FreeCAD Python scripts
Zvyšte si kvalifikaci online z pohodlí domova
Všechny kurzy